Хромаффинная ткань, развитие и строение. По каким показателям оценивается работа надпочечников

Cтраница 1


Хромаффинные клетки встречаются не только в мозговом веществе надпочечников, но и в других участках тела: на аорте, у места разделения сонных артерий, среди клеток симпатических ганглиев малого таза, иногда в толще отдельных ганглиев симпатической цепочки. Все эти клетки относят к так называемой адреналовой системе, так как они вырабатывают адреналин и близкие к нему физиологически активные вещества.  

Катехоламины синтезируются в хромаффинных клетках мозгового слоя надпочечников. Сигналом на синтез этих гормонов является нервный импульс, в результате чего запускается синтез катехоламинов из тирозина. Процесс синтеза адреналина протекает в четыре стадии, причем ключевым ферментом является тирозин-гидроксилаза.  

Мозговое вещество надпочечников состоит из хромаффинных клеток, эмбриогенети-чески родственных клеткам симпатической нервной системы. Они окрашиваются двух-ромовокислым калием в желто-коричневый цвет, что и послужило поводом назвать их хромаффинными.  

МОТИЛЙН, гормон, вырабатываемый хромаффинными клетками слизистой оболочки желудочно-кишечного тракта, преим.  

Кроме надпочечника, адреналин и норадреналин образуются хромаффинными клетками в ганглиозной ткани, разбросанной по всему организму. Выработка гормонов находится под влиянием симпатической нервной системы и повышается при раздражении симпатических волокон, идущих к надпочечнику. Изменения, наступающие при введении адреналина и норадреналина, аналогичны тем, которые наблюдаются при раздражении симпатической нервной системы.  

Заслуживает внимания еще особенно полезная клеточная-линия - линия клеток PC 12, клонированная из феохромоци-томы - опухоли хромаффинной ткани надпочечника. Клетки PC 12 аналогичны хромаффинным клеткам по их способности синтезировать, запасать и высвобождать катехоламины. Подобно не нейрональным клеткам, они размножаются, но под действием NGF они перестают делиться, участвуют в нейритных процессах и становятся очень похожими на симпатические нейроны. Они приобретают электрическую возбудимость, отвечают на ацетилхолин и даже образуют функциональные холинэргические синапсы.  

Это ясно видно на клетках фео-хромоцитомы (PC 12) - линии опухолевых клеток, происходящих из (не нейрональных) хромаффинных клеток мозгового вещества надпочечников. В отличие от нервных клеток они делятся в клеточной культуре и будучи хромаффинными клетками способны к синтезу, хранению и высвобождению катехоламинов. Под влиянием NGF клетки феохромоцитомы дифференцируют далее в направлении нервных клеток: они останавливают пролиферацию и способствуют нейритным процессам; становятся электровозбудимыми и чувствительными к ацетил-холину и развивают способность к образованию синаптических контактов.  

Анализ его внутриклеточной локализации показал, что в клетках головного мозга 60 - 70 % 5 - ГТ накапливается в митохондриях, тогда как в клетках слизистой оболочки пищеварительного тракта большая часть 5 - ГТ локализуется в особых плазматических гранулах. Эндогенный 5 - ГТ создается главным образом в системе хромаффинных клеток. Примерно 80 - 90 % всего эндогенного серотонина находится в тканях желудочно-кишечного тракта.  

Из этого правила, однако, имеются некоторые исключения. Так, постганглионарные симпатические волокна, идущие к гладким мышцам желудочно-кишечного тракта, преимущественно оканчиваются не на мышечных волокнах, а на парасимпатических ганглиозных клетках, находящихся в стенке желудка и кишок. По-видимому, они снижают активность этих клеток и таким путем оказывают тормозящее влияние на гладкую мускулатуру. В данном случае, следовательно, имеется трех-нейронная структура периферического пути. Исключением из отмеченного выше правила является также тот факт, что хромаффинные клетки мозгового слоя надпочечников иннервированы не постганглионарными, а преганглионарными симпатическими волокнами. Хромаффинные клетки, образующие под влиянием импульсов, поступающих к ним по симпатическим волокнам, адреналин, как бы заменяют постганглионарный нейрон, с которым они имеют общее происхождение. В данном случае имеется однонейронная структура эфферентного симпатического пути.  

Резюмируя приведенные в настоящем обзоре данные, можно сделать выводы, что изучение действия адрено-ологапоров является одним из интенсивно развивающихся разделов современной фармакологии. Многие ад-реноблокаторы успешно применяются как в эксперименте в качестве эталонных препаратов и фармакологических анализаторов, так и в практической медицине в качестве эффективных лекарственных средств. Действуя на адренорецепторы эффекторных клеток, эти вещества тем самым препятствуют возбуждающему влиянию эндогенных катехоламинов. Однако даже с помощью наиболее активных а - и р-адреноблокаторов невозможно добиться полного выключения снмпатико-адреналовой системы, как это иногда ошибочно предполагается в работах, выполненных экспериментаторами и клиницистами. Следует помнить, что а-адреиоблокаторы (например, иохим-бин н фентоламии), блокируя постсинаптнческие ffii - ад-ренореиепторы, зачастую блокируют также пресинаптн-ческие а-адренорецепторы, что приводит к усилению высвобождения эндогенных катехоламинов: отсюда несоответствие между адреноблокирующим (устраняющим эффекты, вызванные катехоламинами, введенными извне пли доставленными током крови) и симпатолитическим (устраняющим эффекты, вызванные раздражением симпатических нервов) действием препаратов fRand M. Необходимо еще учитывать, что, по современным представлениям, симпатические нервы и хромаффинные клетки нельзя рассматривать как систему, обеспечивающую только выработку нейромедиатора (гормона), единолично ответственнного за адаптационно-трофическое влияние на процессы жизнедеятельности.  

Страницы:      1

Эндокринную функцию мозговой части надпочечника выполняют происходящие из нервного гребня хромаффинные клетки. При активации симпатической нервной системы надпочечники выбрасывают в кровь катехоловые амины (адреналин и норадреналин). Катехоламины имеют широкий спектр эффектов (воздействие на гликогенолиз, липолиз, глюконеогенез, существенное влияние на сердечно-сосудистую систему). Вазоконстрикция, параметры сокращения сердечной мышцы и другие эффекты катехоловых аминов реализуются через - и ‑адренергические рецепторы на поверхности клеток-мишеней (ГМК, секреторные клетки, кардиомиоциты). Серьёзные клинические проблемы возникают при опухолях эндокринных клеток и их предшественников (нейробластома, феохромоцитома).

Строма . В нежном поддерживающем каркасе, состоящем из рыхлой волокнистой соединительной ткани, расположены многочисленные сосудистые полости - венозные синусы - вариант капилляров типа синусоидов. Их отличительная особенность - значительный диаметр просвета, достигающий десятков и сотен мкм.

Иннервация . Мозговая часть органа содержит множество преганглионарных нервных волокон симпатического отдела нервной системы, хромаффинные клетки расценивают как постганглионарное звено (модифицированные постганглионарные симпатические нейроны) двигательной вегетативной иннервации. Между хромаффинными клетками в мозговом веществе можно также видеть рассеянные небольшие группы ганглионарных клеток с неясной

функцией.

функцией

Хромаффинные клетки

Хромаффинные клетки содержат гранулы с электроноплотным содержимым, которое с бихроматом калия даёт хромаффинную реакцию. Хромаффинные клетки - основной клеточный элемент мозговой части надпочечников и параганглиев, расположенных по ходу крупных артериальных стволов (например, каротидное тело). Мелкие скопления и одиночные хромаффинные клетки находят также в сердце, почках, симпатических ганглиях.

Цитология

Хромаффинные клетки содержат многочисленные митохондрии, выраженный комплекс Гольджи, элементы гранулярной эндоплазматической сети, многочисленные электроноплотные гранулы , содержащие преимущественно норадреналин и/или адреналин (по этому признаку хромаффинные клетки подразделяют на две субпопуляции), а также АТФ, энкефалины и хромогранины. Адреналин-содержащие гранулы гомогенны. Норадреналин-содержащие гранулы характеризуются повышенной плотностью содержимого в центральной части и наличием светлого ободка по периферии под мембраной гранулы.

Секреция гормонов из хромаффинных клеток происходит в результате стимулирующего влияния со стороны преганглионарных симпатических волокон и глюкокортикоидов.

Рис. 9-29. Хромаффинная клетка . Характерны многочисленные электроноплотные гранулы с катехоламинами. Значительный объём клетки занимает крупное ядро. Клетка содержит митохондрии, выраженный комплекс Гольджи, элементы гранулярной эндоплазматической сети.

Гормоны

Катехоламины имеют широкий спектр эффектов (воздействие на гликогенолиз, липолиз, глюконеогенез, существенно влияние на сердечно-сосудистую систему). Вазоконстрикция, параметры сокращения сердечной мышцы и другие эффекты катехоловых аминов реализуются через - и -адренергические рецепторы на поверхности клеток-мишеней (ГМК, секреторные клетки, кардиомиоциты). Серьёзные клинические проблемы возникают при опухолях эндокринных клеток и их предшественников (нейробластома, феохромоцитома).

Катехоловые амины синтезируются из тирозина по цепочке: тирозин (превращение тирозина катализирует тирозингидроксилаза)  ДОФА (ДОФА-декарбоксилаза)  дофамин (дофамин--гидроксилаза)  норадреналин (фенилэтаноламин-N–метилтрансфераза)  адреналин. В ходе синтеза происходит 3 перемещения веществ и продуктов реакций (рис. 9-30). В синтезе участвует 4 фермента.

Синтез катехоламинов .

Хромаффинная клетка синтезирует и запасает адреналин после последовательных этапов с участием четырёх ферментов и трёх перемещений продуктов реакций (пояснения см. в тексте). TH - тирозингидроксилаза; DDC - ДОФА-декарбоксилаза; DBH - дофамин--гидроксилаза; PNMT - фенилэтаноламин-N–метилтрансфераза; VMAT1 - катехоламин/H + -обменник; ДА - дофамин; А - адреналин; НА - норадреналин.

Тирозингидроксилаза (ген TH ) конвертирует тирозин в L-ДОФА. Аминокислота ДОФА (рис. 9-31) выделена из Vicia faba L , активна и применяется как антипаркинсоническое средство, её L-форма - леводопа (L-ДОФА, леводофа, 3-гидрокси-L-тирозин, L-дигидроксифенилаланин). Симпатическая стимуляция и АКТГ увеличивают активность тирозингидроксилазы.

ДОФА-декарбоксилаза (ген DDC ) конвертирует L-ДОФА в дофамин, а также участвует в синтезе серотонина (из 5-гидрокситриптофана) (не только в надпочечнике, но и в других тканях) (рис. 9-31). Дофамин - 4-(2-аминоэтил)пирокатехол (рис. 9-31). Катехоламин/ H + -обменник (VMAT1) (V esicular M onoa mine T ransporter) переносит дофамин в мембранные пузырьки с электроноплотной сердцевиной - хромаффинные гранулы .

Дофамин- -гидроксилаза (ген DBH ) конвертирует дофамин в норадреналин . Дофамин--гидроксилаза локализуется на внутренней поверхности мембраны гранул хромаффинных клеток мозгового вещества и симпатических норадренергических терминалей. В терминалях на этом этапе синтез прекращается, и норадреналин запасается в гранулах для последующей секреции. Дофамин--гидроксилаза секретируется из хромаффинных клеток и норадренергических терминалей вместе с норадреналином, её определение в крови предложено для оценки симпатической активности. Активность дофамин--гидроксилазы стимулируется симпатическими терминалями и АКТГ.

 В хромаффинных клетках мозгового вещества норадреналин конвертируется вне гранулы в адреналин с участием фенилэтаноламин-N–метилтрансферазы (ген PNMT ), присутствующей в цитозоле. Кортизол, поступающий из коркового вещества, стимулирует активность этого фермента. Образовавшийся адреналин поступает в секреторные гранулы также с участием катехоламин/H + -обменника VMAT1. Таким образом, в гранулах накапливаются оба гормона; они связаны с АТФ, Ca 2+ и с хромогранинами (в основном хромогранин B). После секреции, находясь в кровотоке, гормоны отделяются от связывающего комплекса и взаимодействуют с клеткой-мишенью.

Норадреналин - деметилированный предшественник адреналина (2-амино-1-(3,4-дигидроксифенил)этанол (рис. 9-31). Адреналин - l-1-(3,4-дигидроксифенил)-2-(метиламино)этанол - только гуморальный фактор, в синаптической передаче не участвует.

Секрет хромаффинных клеток содержит 10% норадреналина и 90% адреналина.

Пирокатехины.

Деградация адреналина и других биогенных аминов происходит в печени под влиянием моноаминооксидаз и катехол-О-метилтрансферазы. В результате образуются экскретируемые с мочой метанефрины и ванилилминдальная кислота, маркёры феохромоцитомы.

Рецепторы катехоламинов 1 -

Адренорецепторы

Адренорецепторы клеток-мишеней (включая синаптические) связывают норадреналин, адреналин и другие адренергические препараты, как активирующие (агонисты, адреномиметики), так и блокирующие (антагонисты, адреноблокаторы). Адренергические рецепторы подразделяют на - и -подтипы. Среди - и -адренорецепторов различают:  1 - (например, постсинаптические в симпатическом отделе вегетативной нервной системы),  2 - (например, пресинаптические в симпатическом отделе вегетативной нервной системы и постсинаптические в головном мозге),  1 - (например, кардиомиоциты) и  2 -адренорецепторы.

Эффекты, опосредуемые разными адренергическими рецепторами

 1 - усиление гликогенолиза; сокращение ГМК сосудов и мочеполовой системы.

 2 - расслабление ГМК ЖКТ; подавление липолиза; подавление секреции инсулина, ренина.

 1 - увеличение силы сокращения кардиомиоцитов; усиление липолиза.

 2 - усиление секреции инсулина, глюкагона, ренина; расслабление ГМК бронхов, ЖКТ, кровеносных сосудов, мочеполовой системы; усиление гликогенолиза и глюконеогенеза в печени; усиление гликогенолиза в мышцах.

Дофаминовые рецепторы

Дофаминовые рецепторы, как и адренергические, относят к мембранным рецепторам, связанным с G–белком (активируют либо ингибируют аденилатциклазу).

Феохромоцитома - опухоль, состоящая из хромаффинных клеток, синтезирующих катехоламины. Феохромоцитому обнаруживают примерно у 0,5% больных с гипертензией. Большая часть феохромоцитом - одиночные опухоли надпочечников, 10–20% расположено вне надпочечников, 1–3% - в грудной клетке или в области шеи. Около 20% опухолей множественные, 10% - злокачественные.

Семейный (поли)эндокринный аденоматоз (СПЭА) типа II и III: при этих синдромах развивается, наряду с опухолями других эндокринных желёз, и феохромоцитома. Определение катехоловых аминов, продуцируемых большинством опухолей, полезно для установления диагноза, контроля эффективности лечения и диагностики рецидивов. Особенно информативно определение суточной экскреции ванилилминдальной и гомованилиновой кислот.

Нейробластома - злокачественное новообразование, возникающее из клеток нервного гребня и их малодифференцированных клеточных потомков в составе ганглиев симпатического отдела нервной системы, мозгового вещества надпочечников и параганглиев. Повышение содержания в крови нейроно-специфической енолазы и амплификация протоонкогена N–myc в опухолевых клетках ассоциированы с неблагоприятным прогнозом.

Мозговое вещество отделено от коркового небольшой прослойкой соединительной ткани. Построено из больших клеток округлой или полигональной формы, которые за характером синтезированных ими веществ деляться на эпинефроциты и норэпинефроциты. Эпинефроциты имеют светлую, заполненную секреторными гранулами цитоплазму, секретируют адреналин. Цитоплазма норэпинефроцитов под электронным микроскопом выглядит темной, содержит секреторные гранулы норадреналина.

Мозговое вещество надпочечной железы

Схема синтеза катехоламинов /адреналина и норадреналина/ в хромаффинных клетках

Надпочечник . В корковом веществе эпителиальные секреторные клетки формируют тяжи, между которыми находятся кровеносные капилляры. В клубочковой зоне (1) эпителиальные тяжи подворачиваются под капсулу в виде клубочков; в пучковой (2) - идут параллельно друг другу. В сетчатой зоне (3), на границе с мозговым веществом, эпителиальные тяжи образуют анастомозы. Окраска гематоксилином и эозином.

Рецепторы катехоламинов .  1 - и  2 -адренорецепторы и рецепторы дофамина DA-1 связаны с G s , который активирует аденилатциклазу (AC), что приводит к увеличению содержания цАМФ в цитозоле.  2 -Адренорецепторы, рецепторы дофамина DA-2 взаимодействуют с G I , который подавляет активность аденилатциклазы.  1 - Адренорецептор взаимодействует с белком G q , который активирует фосфолипазу С (PLC) с последующим конвертированием фосфоинозитидов в инозитолтрифосфат (IP 3) и диацилглицерол (DAG).

Развитие

Надпочечная железа развивается из двух эмбриональных зачатков: мозговое вещество - из парааортальных нервных ганглиев, корковое, - из разрастаний целомического эпителия, которые формируют так называемое интерреналовое тело. Закладка коркового вещества осуществляется на пятой неделе эмбриогенеза. Большие ацидофильные клетки интерреналового тела - источник образования первичной (фетальной) коры будущих надпочечных желез.

На 6-й неделе внутриутробного развития крупные мезодермальные клетки целомического эпителия образуют скопления между основанием дорзальной брыжейки первичной кишки и развивающимися урогенитальными валиками. По направлению к этим скоплениям из ближайших симпатических ганглиев мигрируют клетки нервного гребня - будущие хромаффинные клетки мозгового вещества. На 8-й неделе мезодермальные клетки начинают интенсивно размножаться, и формируется две зоны коры: наружная - дефинитивная и эмбриональная (фетальная), расположенная на границе с мозговым веществом.

Развитие надпочечника. А - в течение 6-й недели клетки промежуточной мезодермы формируют два симметричные скопления между основанием дорзальной брыжейки первичной кишки и развивающимися урогенитальными валиками; эти клетки, дающие начало фетальной коре, происходят из мезотелия, выстилающего заднюю стенку брюшной полости. Мозговое вещество формируется за счёт клеток нервного гребня, мигрирующих из ближайших симпатических ганглиев; Б - мигрировавшие клетки нервного гребня вначале образуют скопления с медиальной стороны формирующейся фетальной коры, в дальнейшем они окружаются клетками фетальной коры и дифференцируются в клетки мозгового вещества; В - на 7-й неделе развития фетальная кора составляет почти 70% всего объёма коры; Г - в возрасте 4-х месяцев дефинитивная кора вполне развита, её зоны отчётливо выражены; Д - хромаффинные клетки образуют также небольшие скопления (овалы чёрного цвета) вне надпочечника (например, по ходу крупных артериальных стволов, в симпатических ганглиях).

Фетальная кора

Клетки фетальной зоны коры надпочечника у плода крупные, с ацидофильной цитоплазмой и большим бледным ядром. На 10–20-й неделе фетальная кора быстро растёт, к 30-й неделе объём этой зоны увеличивается вдвое. В плодном периоде на долю фетальной зоны приходится большая часть коры надпочечника. Незадолго до рождения начинается дегенерация этой зоны, и к концу первого года жизни фетальная кора полностью исчезает.

Функция . Фетальная кора синтезирует преимущественно глюкокортикоид кортизол и дегидроэпиандростерон, преобразуемый в печени плода в 16-производные, из которых в плаценте образуются эстрогены материнского организма (эстриол, эстрадиол и эстрон).

Дефинитивная кора

Клетки дефинитивной зоны мелкие, имеют базофильную цитоплазму и плотное ядро. К 30-й неделе объём дефинитивной зоны значительно увеличивается. В течение первого года жизни в дефинитивной коре различимы клубочковая, пучковая и сетчатая зоны; полностью дифференцировка корковой части надпочечника завершается к третьему году жизни. В дальнейшем кора продолжает увеличиваться в объёме (особенно интенсивно при половом созревании), достигая окончательных размеров к 20 годам.

Мозговая часть

К 30-й неделе объём мозгового вещества увеличивается в 4 раза. В дальнейшем число хромаффинных клеток возрастает вплоть до завершения полового развития.

Функция . В плодном периоде хромаффинные клетки весьма чувствительны к малейшим изменениям гомеостаза (например, к изменениям pO 2), отвечая на них выбросом катехоловых аминов (адреналина и норадреналина).

Схема взаимосвязи между гипоталамусом, гипофизом и корой надпочечника

На десятой неделе эмбрионального развития первичная кора обрастает мелкими базофильными клетками, которые также происходят из целомического эпителия, из которой образуется дефинитивная кора. Перемещение нейробластов из парааортальних симпатических узлов в интерреналовое тело осуществляется на шестой-седьмой неделе эмбриогенеза. Сначала хромаффинные клетки мозгового вещества продуцируют лишь норадреналин, на более поздних стадиях развития зародыша начинает синтезироватся адреналин.

Надпочечник при гипофизэктомии (вверху) и при стрессе(внизу).

Максимальное развитие надпочечная железа приобретает в 20- 25 лет. Начиная с 50-60 лет отмечается возрастная инволюция клубочковой и пучковой зон коркового вещества, замещение их эндокринных элементов разрастаниями соединительной ткани. Характеристики мозгового вещества и клеток сетчатой зоны с возрастом существенно не изменяются.

Схема взаимодействия между иммунной, нервной и эндокринной системами

Над верхним полюсом почек располагаются небольшие железы, известные в медицине как надпочечники. Несмотря на явное соединение с мочевыделительными органами, функции надпочечников значительно превосходят влияние на работу почек.

Они входят в состав многочисленных эндокринных желез, которые наравне с нервной и иммунной системами управляют в организме человека механизмами приспособления к условиям внешней и внутренней среды, формируют реакцию на любой возбудитель (стресс).

Работа надпочечников связана с выработкой и поставками в кровь гормонов, которые отвечают за защиту внутренних органов путем создания воспалительной реакции, изоляции поврежденного органа с помощью сужения сосудов, обеспечивают готовность к физической и нервной нагрузке.

Вопрос о том, каковы функции надпочечников, изучался в опытах на животных. Современные знания позволяют выделить отдельные разновидности гормонов, определить их биологический состав и строение, проследить их роль в физиологических и патологических процессах. Более того, ученые добились синтеза аналогов гормонов надпочечников и широко используют их в терапии тяжелых заболеваний.

Немного исторических сведений

Историки медицины расходятся во мнении о первых описаниях надпочечников в человеческом организме. Одни считают, что упоминание о «жире над почками» имеется в Библии, другие приписывают первенство Клавдию Галену. Но этот ученый обнаружил только левую железу у млекопитающих.

Самые именитые врачи, занимающие высокое положение при дворах европейских государств, Папы Римского, королевы Австрии Марии Терезии, французского монарха Генриха IV не понимали функции надпочечников, вообще отрицали какую-либо роль такого образования, даже причисляли их к аномалиям развития.

Только спустя 3 столетия началось бурное изучение желез, обнаружено, как устроены надпочечники, функции связаны с эндокринной системой. Шотландскому доктору Томасу Аддисону удалось доказать, что причиной «бронзовой» болезни, приводящей к смертельному исходу, является их недостаточность. Он же впервые выявил метастазирование рака в надпочечники.

До настоящего времени сохранены названия двух слоев, составляющих корковое вещество надпочечников и мозговое. Использование микроскопов с улучшенной разрешающей способностью позволило в XIX столетии разделить структуру и функции эндокринных желез, установить их связь с нервной системой.

Физиологи-экспериментаторы изучали функции надпочечников путем введения вытяжки опытным животным и их удаления.

Методы современной гистологии позволили выделить особые клетки коры надпочечников. После введения в медицинскую практику Адреналина прошло более 100 лет, но исследования продолжаются. Лечебный эффект гормонов позволяет сохранить жизнь миллионам людей, страдающих от болезней, шоковых состояний.

Наружное строение и внешний вид надпочечника

Надпочечники находятся внутри жировой клетчатки у верхушки почек с обеих сторон. По форме имеются различия: справа железа напоминает трехгранную пирамидку, слева - округлый полумесяц.

При описании принято разделять на наружную поверхность, заднюю часть, почечную.

Левая и правая железы расположены несимметрично по отношению к средней линии тела:

  • слева - почечная поверхность находится ближе к срединному краю почки и образованию, называемому «воротами»;
  • справа - четко лежит над верхним полюсом.

Средние размеры желез составляют у взрослого человека по длине 5 см, по ширине - до четырех см, толщина - 1 см. Наружный слой представляет собой толстую бугристую капсулу желтого цвета. Она присоединена к почке множеством плотных фиброзных тяжей. Кроме того, почечная жировая капсула и фасция плотно облегают железы.

На разрезе можно видеть разделение внутренней ткани (паренхимы) на:

  • наружный корковый слой - составляет по массе до 90% всей железы;
  • внутренний - мозговое вещество.

Сквозь кору надпочечников вглубь паренхимы проникают плотные перегородки (трабекулы).

Анатомические отношения с соседними органами

Локализация надпочечников позволяет им не только через кровь, но и контактным путем соприкасаться с важнейшими внутренними органами. Уровень принято определять по отношению к ребрам и позвонкам: обычно это XI и XII позвонки грудного отдела, при этом правый надпочечник залегает немного ниже левого.

Задними поверхностями железы прилежат к диафрагме в ее поясничном отделе. Передней частью левый надпочечник соприкасается с хвостом поджелудочковой железы, кардиальным отделом желудка, ближе к центру - с аортой.

Правый - спереди граничит с печенью и двенадцатиперстной кишкой, в середине - с нижней полой веной.

Внутреннее устройство

Кора надпочечников и мозговое вещество представляют собой самостоятельные железы внутренней секреции. Они структурно объединены в один орган, но имеют разное происхождение и функциональное предназначение. Даже развитие на стадии зародыша происходит независимо друг от друга.

На восьмой неделе беременности формируется будущая кора. А в срок от 12 до 16 недель из первичного симпатического нервного ствола отделяются симпатохромаффинные клетки и прирастают к зачатку коры. Из них образуется мозговое вещество. Хромаффинными клетки называются так из-за сродства к определенному красителю (двухромовокислому калию).

Корковое вещество может внутриутробно образовывать «добавочные» железы в виде мелких телец. Они располагаются в матке, яичниках в организме женщин, в придатке яичка у мужчин, на нижней полой вене, мочеточниках, нервных волокнах солнечного сплетения или на поверхности надпочечников в виде узелков. Не считаются истинными, поскольку не содержат мозгового вещества.

Хромаффинные клетки, объединенные в узлы (параганглии), кроме мозгового вещества надпочечников, имеются в области бифуркации аорты (выше и ниже разделения), в узлах симпатических ганглиев, в зоне бифуркации общего ствола сонной артерии.

Корковый слой делится на три зоны, каждая из которых синтезирует отдельные виды гормонов:

  • ближе к поверхности располагается тонкий клубочковый слой;
  • в середине пролегает пучковая зона;
  • изнутри - сетчатая зона соприкасается с мозговым веществом.

Мозговое вещество получает прямые указания из нервной системы. Работой коры надпочечников руководит гипофиз через свои нейроэндокринные гормоны, подконтрольные гипоталамусу продолговатого мозга и ренин-ангиотензивной системе.

Особенности кровоснабжения

Почки и надпочечники имеют общее кровоснабжение. Они получают кровь по трем артериям:

  • ответвлению от нижне-диафрагмальной артерии - главной надпочечниковой;
  • отходящей от брюшной аорты - средней надпочечниковой;
  • части почечной артерии - нижней надпочечниковой.

Венозная кровь уходит в правую надпочечниковую вену, впадающую в нижнюю полую, а из левой железы через левую надпочечниковую, почечную в нижнюю диафрагмальную вену. В хирургии брюшной полости учитывается риск повреждения правой почечной вены (короткая) в ходе операции по удалению надпочечника.

Возрастные особенности

Исследования показали особенности структуры надпочечников в разных возрастных периодах человека. При рождении в корковом слое имеется только 2 зоны:

  • зародышевая кора;
  • очень тонкая настоящая кора.

Затем начинает уменьшаться вся железа за счет исчезновения зародышевого слоя. В подростковом периоде, когда идет половое созревание, надпочечники растут в размерах, масса достигает 10 г.

В старческом возрасте происходит атрофия паренхимы обоих слоев, железы снова уменьшаются.

Функциональное назначение надпочечников

Функции надпочечников определяются синтезом определенных гормонов, активных биологических веществ, влияющих на все стороны метаболизма, развития, роста, синхронизирующих деятельность внутренних органов человека.

За что отвечает корковый слой?

В корковом слое вырабатываются разные гормоны, зависящие от конкретного места синтеза, он обеспечивается наличием специфических ферментов:

  • в клубочковом слое - минералкортикоиды (альдостерон);
  • в пучковом - глюкокортикоиды (11-дезоксикортикостерон, кортизол, кортикостерон);
  • в ретикулярном (сетчатом) - половые гормоны андрогены и эстрогены.

Минералкортикоиды производят в организме регуляцию артериального давления через канальцы почечной ткани, задержку натрия, повышенный вывод калия и водородных ионов. В случаях потери жидкости из-за повышенного потоотделения или диареи альдостерон задерживает натрий путем регуляции обратного всасывания в толстой кишке и потовых железах.

Кроме того, известно активизирующее воздействие альдостерона на ангиотензин II. Он вступает в действие при падении артериального давления ниже 90 мм рт. ст.

Глюкокортикоиды регулируют все виды метаболизма в организме. Главный представитель - кортизол - способен усилить выработку катехоламинов в мозговом веществе, глюкагона. В ответ на повышенный выброс в кровь адренокортикотропного гормона передней доли гипофиза возможна резкая стимуляция синтеза кортизола.

Защитное действие проявляется в поддержке минимального уровня сахара в крови во время голодания.

Значение мозгового вещества

В мозговом слое надпочечников вырабатывается 80% всего адреналина организма и 20% - норадреналина. Они синтезируются в хромаффинных клетках. В процесс продукции вступает тирозин (одна из аминокислот). Из нее получается дезоксифенилаланин. Затем идет реакция декарбоксилирования с образованием дофамина. Из него под влиянием ферментов получается норадреналин, затем адреналин.

Эти гормоны обеспечивают защитную мобилизацию всех систем и органов в случае угрозы. Активация начинается после получения «приказа» от симпатической нервной системы по волокнам грудного отдела спинного мозга. Принимает участие также корковый гормон кортизол.

Цепную реакцию можно представить следующей схемой: агент-раздражитель, расцениваемый головным мозгом как опасный → передача возбуждения на ядра гипоталамуса → переход импульса к спинномозговым симпатическим центрам в грудном отделе → распространение на нервные волокна → попадание в мозговой слой надпочечников и производство адреналина, норадреналина (выход из гранул).

Подробнее о роли надпочечников для человека можно узнать в этой статьи.

Влияние надпочечников на половые признаки, течение беременности

Изменение работы надпочечников у женщин касается сетчатой зоны и нарушенного соотношения между выработкой эстрогенов, андрогенов. Для мужчин андрогены определяют развитие в период полового созревания мужских половых признаков. Женщины должны обязательно иметь определенный уровень тестостерона, а мужчины - эстрогенов. Обе разновидности половых гормонов важны в способности иметь потомство, выносить беременность.

Эстрогены называют защитниками женского организма. Вырабатываются в яичниках, а при возрастной атрофии - только надпочечниками. Они позволяют поддерживать холестериновый обмен на необходимом уровне, не допуская отложения атеросклеротических бляшек в сосудах. При менопаузе на надпочечники ложится функция поддержания уровня эстрогенов без яичников.

При беременности передняя доля гипофиза увеличивается в 2 раза. Она стимулирует деятельность надпочечников. Для плода необходима регуляция водно-солевого обмена, значит, требуется больше минералкортикоидов. Физиология матери связана с реакцией на плод, поэтому повышенный синтез глюкокортикоидов обеспечивает необходимое снижение иммунитета для блокирования возможного отторжения.

Негативное действие наблюдается в виде повышенной пигментации, усиления роста волос на теле будущей матери, образования стриев на коже.

Физиология стресса и работа надпочечников

Стрессовая реакция сначала носит характер защиты и обеспечивает подготовку всех систем и органов к работе в экстремальных для них условиях. Но при частом повторении «тревожных атак» происходит истощение сетчатой зоны коры. Формируется надпочечниковая слабость или недостаточность.

Способность организма реагировать на раздражающий фактор падает. Следует обратить внимание на такие стрессовые воздействия, как голодание, изнуряющие физические тренировки.

При голодании организм защищает себя, используя возможность производства глюкокортикоидов с целью поддержки уровня глюкозы. Происходит биохимический процесс глюкогенеза с расщеплением углеводов и протеинов. Нагрузка надпочечников значительно возрастает. Это может лишь усилить действие стресса, привести к хронической недостаточности, потерям жизненной энергии для выживания.

Не зря спортсменов-профессионалов наблюдают врачи. Известно достаточно случаев появления мужских половых признаков у женщин при чрезвычайном развитии мышц.

После ухода из профессионального спорта акушеры-гинекологи получают истощенных физически будущих матерей, требующих усиленного внимания для возможности родить здорового ребенка.

Не следует забывать, что потеря либидо у молодых людей тоже является начинающимся симптомом перегрузки надпочечников.

По каким показателям оценивается работа надпочечников?

При появлении симптомов недостаточности или гиперфункции надпочечников проводятся лабораторные исследования:

  • Анализ слюны забирают четырехкратно в течение суток в отдельные пробирки. Он позволяет определить уровень колебаний гормонов.
  • Таким же образом исследуют сыворотку крови на кортизол и другие гормоны.
  • Адреналин и кортизол определяют в собранной за сутки моче.
  • При недостаточном уровне проводят тест со стимуляцией адренокортикотропным гормоном. Он позволяет судить об ответной реакции надпочечников. Берут исходный анализ крови, затем вводят Кортикотропин внутримышечно. Через полчаса-час повторно исследуют гормоны.
  • При высоком содержании проводят тест с Дексаметазоном. Его дают внутрь, контрольные анализы проводят через сутки или двое суток.

Проблемы недостаточности надпочечников часто возникают у пациентов с длительно текущими заболеваниями. Поэтому показано применение их аналогов в лечении. Нельзя устраивать дополнительные перегрузки своему организму. Дальнейшая реакция непредсказуема даже для очень закаленных людей.

Липома в почке

Липома почки - редкое жировое образование в пределах почки или окружающих тканей. Такое заболевание чаще выявляется у женщин после 35 лет и разрастается до больших размеров, вызывая боли и гематурию. Доброкачественные образования имеют риск перерождения в раковые формы, а лечение предполагает полную нефрэктомию.

Липома - это доброкачественное образование из адипоцитов в различных тканях тела. Почки - редкое место для локализации.

Выделительный орган состоит из двух зон:

  • коры, или периферической части;
  • мозгового вещества или продолговатого мозга внутренней части.

Опухоли обнаруживаются в любом месте, но чаще в корковом слое, случайно при проведении исследований по другим причинам.

Проявления жировика в зависимости от размеров могут быть следующими:

Липома на почке чаще появляются у женщин и лечится хирургическим путем. Не существует факторов, обуславливающих предрасположенность к этой патологии.

Причины появления единичных липом не установлены медицинской наукой. Такое поражение обусловлено употреблением алкоголя, курением, неблагоприятной экологической ситуацией, облучением, в том числе терапевтическим. Липоматоз, или большое количество липом является генетически обусловленным состоянием с аутосомно-доминантным типом наследования.

Механизм формирования жировика не раскрыт, а проявления зависят от размера и расположения. Небольшая липома почки бессимптомна, крупная - провоцирует симптомы инфекций мочевыводящих путей и нефропатии.

Липомы чаще находятся в периферической части почек, иногда выходят за пределы органа в брюшную полость. Образование имеет четкие границы, отделено от других тканей. Сопровождается, помимо признаков заболеваний почек, повышенным артериальным давлением. Большие очаги могут серьезно ухудшить функцию почек, сдавливать соседние органы и структуры, а иногда и проникать в них.

Липома почки диагностируется случайно во время проведения рентгена, магнитно-резонансной томографии (МРТ), ультразвукового исследования (УЗИ) по другим вопросам. При визуализации опухоли требуется полное физическое обследование, сбор анамнеза, УЗИ и рентген.

Анализ мочи подтверждает присутствие клеток крови, оценивает почечную функцию. С помощью красителя, вводимого в сосуды, можно увидеть четкую картину органа. Требуются ангиографические исследования сосудов новообразования.

В отдельных случаях применяются инвазивные диагностические процедуры:

  1. Лапароскопический осмотр - предполагает введение прибора с камерой через небольшой разрез в брюшную полость. При выявлении опухолей хирург сразу проводит операцию.
  2. Диагностическая лапаротомия требуется при необходимости взятия биопсии для анализа тканей.

Процедуры относятся к лечебным, с помощью которых может быть выполнена нефрэктомия. Для получения точного диагноза требуется биопсия, проводимая методом тонкоигольной аспирации. Метод имеет ограничения, поскольку не позволяет визуализировать различные морфологические участки опухоли. Ткани отправляются в лабораторию для гистологического исследования.

Изучение биоптата под микроскопом считается золотым стандартом при определении окончательного диагноза. Используется оценка с помощью окраски гематоксилином и эозином. Иногда проводится иммуногистохимическое и молекулярное тестирование.

Дифференциальная диагностика помогает отличить липомы от других типов опухолей:

  1. ангиолипома;
  2. атипичный липоматоз забрюшинного пространства;
  3. липосаркомы.

Выбор метода обследования остается на усмотрение лечащего врача. Нужно серьезно подойти к проблеме, регулярно проходить обследования. Сколько времени будет расти липома, предугадать крайне сложно.

Многие заболевания могут иметь аналогичные признаки и симптомы, потому обследоваться и лечиться обязательно. Предотвратить образование липомы невозможно. Регулярные осмотры помогают вовремя обнаружить опухоли. Считается, что избыточный вес и нарушения обменных процессов провоцируют появление жировиков.

Осложнения липомы почек, прежде всего, связаны со страхом перед раковыми опухолями. Насколько серьезна опухоль, помогает понять только биопсия. Хирургическая операция редко осложняется повреждением мышц, жизненно важных нервов и кровеносных сосудов. Существует риск послеоперационных инфекций шва.

Исследования показывают, что липома почки редко превращается в злокачественные патологии. Большинство бессимптомных новообразований не удаляется после подтверждения доброкачественного характера.

Врачи выбирают выжидательную тактику для небольших очагов, проводят тонкоигольную биопсию. Хирургическое вмешательство с полным иссечением излечивает заболевание, снижает вероятность рецидива.

Хирургические методы лечения липомы разнообразны:

  • эндоскопическая хирургия;
  • органосохраняющая хирургия;
  • частичная или полная нефрэктомия;
  • эмболизация опухоли предполагает использование коагуляции сосудов, питающих липому.

Существует несколько разновидностей жировых опухолей с включением клеточных компонентов: ангиолипомы с сосудистыми тканями, миелолипомы - с мышечными. Ученые проводили эксперимент по дифференциальной диагностике с помощью УЗИ (ультразвукового исследования). Образования отличает чрезвычайно плотный гиперэхогенный сигнал. Выявление диффузных гамартом связано с развитием туберозного склероза. Особенность эхогенности связана с жировой тканью и позволяет проводить точную дооперационную диагностику доброкачественных образований. Подтверждение ангиолипомы с помощью УЗИ позволяет назначать консервативную терапию и сохранить функционирующую почку.

Рис. 1. Мозговое вещество (М) надпочечника сформировано анастомозирующими пучками округлых, полигональных или цилиндрических хромаффинных клеток (ХК), находящихся в тесном контакте с капиллярами. Термин «хромаффинный» объясняется способностью катехоламинов (адреналина и норадреналина) окисляться и полимеризоваться в присутствии водных растворов солей металлов (бихромата калия, хлорида железа) или других окисляющих агентов в коричневое, подобное меланину, соединение - адренохром.

Капилляры соединяются в посткапиллярные венулы (ПВ), или венозные корешки, которые, в свою очередь, объединяются в медуллярные вены (MB). Одна из них показана на рисунке в объемной перспективе.

Медуллярная вена имеет тонкий адвентициальный слой (А) и среднюю оболочку (СО). Внутренняя оболочка (ВО) имеет хорошо развитые интимальные подушки (ИП), образованные продольно или спирально расположенными гладкими мышечными пучками (П). Сокращение пучков уменьшает или временно закрывает венозную циркуляцию, обусловливая обогащение венозной крови надпочечными гормонами.


Рис. 2. В человеческом организме, в отличие от других млекопитающих, имеется только один тип хромаффинных клеток . Клетки мозгового вещества надпочечника полигональной или неправильной формы, с отростками (О), которые проникают между соседними клетками. Близлежащие хромаффинные клетки часто формируют тонкие межклеточные канальцы (К) между ними. Ядро хромаффинных клеток округлое, имеет заметное ядрышко. Цитоплазма включает умеренное количество митохондрий, развитую гранулярную эндоплазматическую сеть, много лизосом, редкие мультивезикулярные тельца и большое число секреторных гранул, образующихся из комплекса Гольджи (Г). Секреторные гранулы, имеющие различные морфологические вариации, имеют 100-300 нм в диаметре и окружены одинарной мембраной (светлой вокруг темных гранул). В организме человека 2 вида секреторных гранул: малые, сильно осмиофильные, темные гранулы (TV), составляющие около 80 % от всех гранул и, вероятно, включающие норадреналин, и большие светлые гранулы (СГ), содержащие умеренно осмиофильный, гранулированный материал - возможно, адреналин. Хромаффинные гранулы также включают опиатные пептиды (энкефалины), АТФ и хромогранины, которые являются связующими белками для катехоламинов. Гранулы выделяются из клетки путем экзоцитоза (см. стрелки). В отличие от коры надпочечника тяжи хромаффинных клеток выстланы целостной базальной мембраной (БМ). Фенестрированные капилляры (Кал) мозгового вещества также имеют целостную базальную мембрану (кБМ), они сопровождаются хорошо очерченными перикалиллярными пространствами (ПП). В этих пространствах находятся ретикулярные и коллагеновые фибриллы (КФ), преганглионарные симпатические нервные волокна (НВ). Окончания нервных волокон (ОВ) проникают через базальную мембрану и образуют типичные синапсы с хромаффинными клетками. Многочисленные прозрачные синаптические пузырьки (СП), сконцентрированные в нервных окончаниях, содержат ацетилхолин (нейромедиатор).

Вокруг хромаффинных клеток в мозговом веществе надпочечника находятся редкие ганглии и шванновские клетки, которые не изображены на рисунке.


Адреналин и норадреналин секретируются под воздействием стрессовых факторов. Они учащают сердечные сокращения, усиливают работу сердечной мышцы, потребление 02, повышают содержание глюкозы в крови и выделение адренокортикотропного гормона из гипофиза. Все это служит для быстрой адаптации организма к меняющимся условиям окружающей среды

Эти клетки расположены диффузно в различных органах, их совокупность образует диффузную эндокринную систему (ДЭС).

ДЭС включает две самостоятельные группы.

Первая группа - это клетки APUD-системы. Они характеризуются высоким содержанием аминов, в связи с чем было предложено объединить эти клетки в систему, которая была названа по первым буквам английских слов Amine Precursors Uptake and Decarboxylating system - APUD-система - система захвата предшественников аминов и их декарбоксилирования. К этой системе относят эндокринные клетки центральной и периферической нервной системы, желез внутренней секреции, сердца, почек, печени, легких, селезенки. Эндокриноциты нервной системы представлены нейросекреторными клетками, сочетающими морфологические признаки нейронов и гландулоцитов, рефлекторную и эндокринную функции. Основные скопления нейросекреторных клеток находятся в гипоталамусе. Выделяемые ими пептидные гормоны (рилизинг-факторы, или либерины, и ингибирующие факторы - статины) регулируют эндокринные функции аденогипофиза, и через его тропные гормоны опосредованно контролируют функции щитовидной железы, половых желез и коркового вещества надпочечников.

Есть отдельная группы клеток, не относящихся к APUD-системе. Например, юкстагломерулярные клетки в почках, продуцирующие ренин, лимфоцитстимулирующие (продуцируют лимфопоэтин) и др. клетки.

Частью ДЭС является также энтериновая система, представленная эндокринными клетками слизистой оболочки желудочно-кишечного тракта, которые вырабатывают свыше 40 гормонов и других биологически активных веществ, регулирующих пищеварительные и непищеварительные функции.

Таблица 2. Основные БАВ одиночных гормонпродуцирующих клеток

Место синтеза

Вещество

Физиологические эффекты

Эритропоэтин

Стимулирует эритропоэз (образование эритроцитов). Мощный допинг.

Компонент ренин-ангиотензиновой системы, обеспечивающей экстренное повышение кровяного давления.

Предсердный натрийуретический пептид

Мощный вазодилятатор (расширяет кровеносные сосуды, снижая артериальное давление). Снижает реабсорбцию (обратное всасывание) натрия и воды в почках (снижает объем воды в сосудистом русле).

Стимулирует выделение соляной кислоты и пепсина; возбуждает моторику желудка и двенадцатиперстной кишки; сокращает желчный пузырь.

Тонкая кишка

Секретин

Стимулирует выделение панкреатического сока поджелудочной железой, печенью и железами бруннеровыми; пепсина -- желудком; тормозит моторику желудка; тормозит абсорбцию воды и натрия; сокращает пилорический канал, усиливает действие холецистокинина

Холицистокинин

Стимулирует секрецию панкреатического сока и сокращения желчного пузыря, подавляет моторику желудка, действует как сигнал сытости

Жировые клетки

Регулирует энергетический обмен. Оказывает анорексигенное действие (подавляет аппетит). Снижение концентрации лептина ведёт к развитию ожирения.

Плацента

Хорионический гонадотропин

Обеспечивает нормальное протекание беременности, оказывает влияние на процессы дифференцировки и развития плода. Окрашивает тест-полоски определения беременности.

Нейроны ЦНС

Контролирует движения. Гормон «системы подкрепления» (удовольствие при удовлетворении потребностей). Эндогенный аналог кокаина, амфетамина.

Эндорфины, энкефалины

Компоненты стресс-лимитирующей системы: снижают болевую чувствительность, улучшают настроение, вызывают эйфорию. Эндогенные аналоги героина, опиума, морфия.

Хромаффинные клетки

В мозговом веществе надпочечников, в вегетативных ганглиях симпатической и парасимпатической нервной системы, частично в стенках магистральных сосудов рассеяны клетки, составляющие хромаффинную ткань. По происхождению и функционально хромаффинные клетки связаны с симпатической нервной системой и вместе составляют симпатоадреналовую систему быстрого реагирования. Хромаффинные клетки вырабатывают норадреналин, адреналин и ряд регуляторных пептидов.