Молекулярно генетические механизмы регуляции пролиферации клетки. Введение. Пути регуляции CDK

. Глава II
Репродукция клеток. Проблемы клеточной пролиферации в медицине.
2.1. Жизненный цикл клетки.
Клеточная теория гласит, что клетки появляются от клеток путем деления исходной. Это положение исключает образование клеток из неклеточного вещества. Делению клеток предшествует редупликация их хромосомного аппарата , синтез ДНК как в эукариотических, так и в прокариотических организмах.

Время существования клетки от деления до деления называется клеточным или жизненным циклом. Величина его значительно варьирует: для бактерий это 20-30 минут, для туфельки 1-2 раза в сутки, для амебы около 1,5 суток. Клетки многоклеточных обладают также разной способностью к делению. В раннем эмбриогенезе они делятся часто, а во взрослом организме большей частью утрачивают эту способность, так как становятся специализированными. Но даже в организме, достигшем полного развития, многие клетки должны делиться, чтобы замещать изношенные клетки, которые постоянно слущиваются и, наконец, нужны новые клетки для заживления ран.

Следовательно, у некоторых популяций клеток деления должны происходить в течение всей жизни. Учитывая это, все клетки можно разделить на три категории:

1. К моменту рождения ребенка нервные клетки достигают высокоспециализированного состояния, утрачивая способность к размножению, В процессе онтогенеза количество их непрерывно уменьшается. Это обстоятельство имеет и одну хорошую сторону; если бы нервные клетки делились, то высшие нервные функции (память, мышление) нарушились бы.

2. Другая категория клеток тоже высокоспециализированная, но в силу их постоянного слущивания замещаются новыми и эту функцию выполняют клетки этой же линии, но еще не специализированные и не утратившие способность делиться. Эти клетки называют обновляющимися. Примером являются постоянно обновляющиеся клетки кишечного эпителия, кроветворные клетки. Даже клетки костной ткани способны образовываться из неспециализированных (это можно наблюдать при репаративной регенерации костных переломов). Популяции неспециализированных клеток, сохраняющие способность к делению называются, как правило, стволовыми.

3. Третья категория клеток - исключение, когда высокоспециализированные клетки при определенных условиях могут вступить в митотический цикл. Речь идет о клетках, отличающихся большой продолжительностью жизни и где после полного завершения роста деление клеток происходит редко. Примером являются гепатоциты. Но если у экспериментального животного удалить 2/3 печени, то менее чем за две недели она восстанавливается до прежних размеров. Такими же являются и клетки желез , вырабатывающих гормоны: в нормальных условиях лишь немногие из них способны воспроизводиться, а при измененных условиях большинство из них могут начать делиться.

Клеточный цикл означает многократное повторение последовательных событий, занимающих определённый отрезок времени. Обычно циклические процессы графически изображают в виде окружностей.

Клеточный цикл делится на две части: митоз и промежуток между окончанием одного митоза и началом следующего - интерфаза. Метод авторадиографии позволил установить, что и интерфазе клетка не только выполняет свои специализированные функции, но и синтезирует ДНК. Этот период интерфазы назвали синтетическим (S). Он начинается спустя примерно 8 часов после митоза и завершается через 7-8 часов. Промежуток между S-периодом и митозом назвали пресинтетическим (G1 - 4 часа) после синтетического, перед собственно митозом - постсинтетическнм (G2). происходящим примерно в течение часа.

Таким образом, в клеточном цикле стали различают четыре стадии; митоз, G1-период, S -период, G2- период.

Установление факта удвоения в интерфазе ДНК, означает, что во время ее клетка не может выполнять специализированные функции, она занята построением клеточных структур, синтезом строительных материалов, обеспечивающих рост дочерних клеток, накоплением энергии, затраченной во время собственно митоза, синтезированием специфических ферментов для репликации ДНК. Поэтому интерфазные клетки для выполнения своих предначертанных генетической программой функций (стать высокоспециализированными) должны на время или навсегда выйти из цикла в период G0, или остаться в продленном G1 (существенных различий в состоянии клеток периодов G0 и G1 не отмечено, так как из G0 можно вернуть клетки в цикл). Следует отметить особо, что у многоклеточных зрелых организмов заведомо большая часть клеток находится в G0-периоде.

Как уже говорилось, увеличение числа клеток идет только за счет деления исходной клетки, чему предшествует фаза точного воспроизведения генетического материала, молекул ДНК, хромосом.

Митотическое деление включает в себя новые состояния клеток: интерфазные, деконденсированные и уже редуплицированные хромосомы переходят в компактную форму митотических хромосом, образуется ахроматиновый митотический аппарат, участвующий в переносе хромосом, хромосомы расходятся к противоположным полюсам и происходит цитокинез. Процесс непрямого деления принято подразделять на следующие основные фазы: профаза, метафаза, анафаза и телофаза. Деление условное, так как митоз представляет непрерывный процесс и смена фаз происходит постепенно. Единственная фаза, имеющая реальное начало - анафаза , в которой

начинается расхождение хромосом. Длительность отдельных фаз различна (в среднем профаза и телофаза - 30-40", анафаза и метафаза - 7-15"). К началу митоза клетка человека содержит 46 хромосом, каждая из которых состоит из 2-х идентичных половинок - хроматид (хроматиду еще называют S-хромосомой, а хромосому, состоящую из 2-х хроматид - d-хромосомой).

Одно из самых замечательных явлений, наблюдаемых в митозе, это образование веретена деления. Оно обеспечивает выстраивание d-хромосом в одной плоскости, в середине клетки и передвижение S-хромосом к полюсам. Веретено деления образуется центриолями клеточного центра. Микротрубочки образуются в цитоплазме из белка тубулина.

В G1-периоде каждая клетка содержит по две центриоли, ко времени перехода в G2 - период возле каждой центриоли образуется дочерняя центриоль и всего их формируется две пары.

В профазе одна пара центриолей начинает перемещаться к одному полюсу, другая к другому.

Между парами центриолей навстречу друг другу начинает формироваться набор межполюсных и хромосомных микротрубочек.

Ядерная оболочка в конце профазы распадается, ядрышко прекращает свое существование, хромосомы (d) спирализуются, веретено деления перемещается в середину клетки и d-хромосомы оказываются в промежутках между микротрубочками веретена.

D-хромосомы в течение профазы проходят путь конденсации от нитевидных структур до палочковидных. Укорочение и утолщение (d-хромосом продолжается и некоторое время в метафазе, в результате чего метофазные d-хромосомы обладают достаточной плотностью. В хромосомах четко видна центромера, разделяющая их на равные или неравные плечи, состоящие из 2-х примыкающие друг к другу S-хромосом (хроматид). В начале анафазы S-хромосомы (хроматиды) начинают перемещаться от экваториальной плоскости к полюсам. Начинается анафаза с расщепления центромерной области каждой из хромосом, в результате чего две S-хромосомы каждой d-хромосомы полностью отделяются одна от другой. Благодаря этому каждая дочерняя клетка получает по идентичному набору из 46-ти S-хромосом. После разделения центромер одна половина из 92-х S-хромосом начинает двигаться к одному полюсу, другая половина к другому.

До сегодняшнего дня точно не установлено, под действием каких сил осуществляется передвижение хромосом к полюсам. Есть несколько версий:

1. В веретене деления есть актиносодержащиеся нити (а также другие мышечные белки), возможно, что сила эта генерируется так же как в мышечных клетках.

2. Движение хромосом обусловлено скольжением хромосомных микротрубочек по непрерывным (межполюсным) микротрубочкам с противоположной полярностью (Мак-Итош, 1969, Марголис, 1978).

3. Скорость передвижения хромосом регулируют кинетохорные микротрубочки, чтобы обеспечить упорядоченное расхождение хроматид. Скорее всего, все перечисленные механизмы осуществления математически точного распределения наследственного вещества по дочерним клеткам кооперируются.

К концу анафазы и к началу телофазы в середине вытянувшейся клетки начинается образование перетяжки, она образует так называемую борозду дробления, которая углубляясь, делит клетку на две дочерние. В образовании борозды принимают участие актиновые нити. Но мере углубления борозды клетки связаны между собой пучком микротрубочек, называемым срединным тельцем, остаток его некоторое время присутствует и в интерфазе. Параллельно цитокинезу , у каждого полюса происходит деспирализация хромосом в обратном порядке от хромосомного до нуклеосомного уровня. Наконец, наследственное вещество принимает вид глыбок хроматина, либо плотно упакованных, либо деконденсированных. Вновь формируется ядрышко, ядерная оболочка, окружающая хроматин и кариоплазма. Таким образом, в результате митотического деления клеток, вновь образованные дочерние между собой идентичные и являются копией материнской клетки, что важно для последующего роста, развития и дифференцировки клеток, тканей.
2.2. Механизм регуляции митотической активности
Поддержание числа клеток на определенном, постоянном уровне обеспечивает в целом гомеостаз. Например, число эритроцитов и лейкоцитов в здоровом организме относительно стабильно, несмотря на то, что эти клетки отмирают, происходит их постоянное пополнение. Следовательно, скорость образования новых клеток должна регулироваться, с тем чтобы она соответствовала скорости их гибели.

Для поддержания гомеостаза необходимо, чтобы число различных специализированных клеток в организме и те функции, которые они должны выполнять, находились под контролем различных регуляторных механизмов, поддерживающих все это в стабильном состоянии.

Во многих случаях клеткам подается сигнал о том, что они должны повысить свою функциональную активность, а для этого может понадобиться увеличение числа клеток. Например, если содержание Са в крови падает, то клетки паращитовидной железы усиливают секрецию гормона , уровень кальция достигает нормы. Но если в рационе животного не достает кальция, то дополнительное продуцирование гормона не повысит содержание этого элемента в крови, В этом случае клетки щитовидной железы начинают усиленно делиться, с тем чтобы увеличение их числа привело к дальнейшему повышению синтеза гормона. Таким образом, понижение той или иной функции может привести к увеличению численности популяции клеток, обеспечивающих эти функции.

У людей попадающих в высокогорную местность, резко увеличивается количество эритроцитов (на высоте меньше 02) для того, чтобы обеспечить организм необходимым количеством кислорода. На снижение кислорода реагируют клетки почек и усиливают секрецию эритропоэтина, усиливающего кроветворение. После образования достаточного количества дополнительных эритроцитов гипоксия исчезает и клетки, вырабатывающие указанный гормон, снижают его секрецию до обычного уровня.

Клетки, полностью дифференцированные, не могут делиться, но тем не менее количество их может увеличиться за счет стволовых клеток, от которых они произошли. Нервные клетки не могут ни при каких обстоятельствах делиться, но функцию свою могут повысить за счёт увеличения своих отростков и умножения соединений между ними.

Следует отметить, что у взрослых особей соотношение общих размеров различных органов остаётся более или менее постоянным. При искусственном нарушении существующего соотношения размеров органа оно стремится к норме (удаление одной почки приводит к увеличению другой).

Одна из концепций, объясняющая это явление, состоит в том, что пролиферация клеток регулируется особыми веществами - кейлонами. Предполагается, что они обладают специфичностью в отношении клеток разных типов, тканей органов. Считается, что понижение количества кейлонов стимулирует пролиферацию клеток, например, при регенерации. В настоящее время эта проблема тщательно изучается разными специалистами. Получены данные, что кейлоны - это гликопротеиды с молекулярной массой 30000 – 50000.

2.3. Нерегулярные типы репродукции клеток
Амитоз . Прямое деление или амитоз, описано раньше митотического деления, но встречается гораздо реже. Амитоз - это деление клетки, у которой ядро находится в интерфазном состоянии. При этом не происходит конденсации хромосом и образования веретена деления. Формально амитоз должен приводить к появлению двух клеток , однако чаще всего он приводит к разделению ядра и появлению двух- или многоядерных клеток.

Начинается амитотическое деление с фрагментации ядрышек, вслед за этим делится перетяжкой ядро (или инвагинацией). Может быть множественное деление ядра, как правило неравной величины (при патологических процессах). Многочисленные наблюдения показали, что амитоз встречается почти всегда в клетках отживающих, дегенерирующих и не способных дать в дальнейшем полноценные элементы. Так в норме амитотическое деление встречается в зародышевых оболочках животных, в фолликулярных клетках яичника, в гигантских клетках трофобластов. Положительное значение амитоз имеет в процессе регенерации тканей или органа (регенеративный амитоз). Амитоз в стареющих клетках сопровождается нарушениями биосинтетических процессов, включая репликацию, репарацию ДНК, а также транскрипцию и трансляцию. Изменяются физико-химические свойства белков хроматина ядер клеток, состав цитоплазмы, структура и функции органоидов, что влечет за собой функциональные нарушения на всех последующих уровнях - клеточном, тканевом, органном и организменном. По мере нарастания деструкции и угасания восстановления наступает естественная смерть клетки. Нередко амитоз встречается при воспалительных процессах и злокачественных новообразованиях (индуцированный амитоз).

Эндомитоз. При воздействии на клетки веществами разрушающими микротрубочки веретена, деление прекращается, а хромосомы будут продолжать цикл своих превращений: реплицироваться, что приведет к поэтапному образованию полиплоидных клеток - 4 п. 8 п. и т.д. Такой процесс преобразований иначе называется эндорепродукцией. Способность клеток к эндомитозу используют в селекции растений для получения клеток с кратным набором хромосом. Для этого применяют колхицин, винбластин, разрушающие нити ахроматинового веретена. Полиплоидные клетки (а затем и взрослые растения) отличаются большими размерами, вегетативные органы из таких клеток крупные, с большим запасом питательных веществ. У человека эндорепродукция имеет место в некоторых гепатоцитах и кардиомиоцитах.

Другим, более редким результатом эндомитоза являются политенные клетки. При политении в S-периоде в результате репликации и нерасхождения хромосомных нитей образуется многонитчатая, политенная структура. От митотических хромосом они отличаются большими размерами (длиннее в - 200 раз). Встречаются такие клетки в слюнных железах двукрылых насекомых , в макронуклеусах инфузорий. На политенных хромосомах видны вздутия, пуфы (места транскрипции) - выражение генной активности. Эти хромосомы - важнейший объект генетических исследований.
2.4. Проблемы клеточной пролиферации в медицине.
Как известно, ткани с высокой скоростью обновления клеток более чувствительные к воздействию различных мутагенов, чем ткани, в которых клетки обновляются медленно. Однако, например, лучевое повреждение может проявляться не сразу и необязательно ослабевает с глубиной, иногда даже гораздо сильнее повреждает глубоколежащие ткани, чем поверхностные. При облучении клеток рентгеновскими или гамма-лучами в жизненном цикле клеток происходят грубые нарушения: митотические хромосомы изменяют форму, возникают их разрывы с последующим неправильным соединением фрагментов, иногда отдельные части хромосом исчезают вовсе. Могут возникнуть аномалии веретена (образоваться не два полюса в клетке, а три), что приведет к неравномерному расхождению хроматид. Иногда повреждение клетки (большие дозы облучения) бывает столь значительным, что все попытки клетки приступить к митозу оказываются безуспешными и деление прекращается.

Подобным действием облучения и объясняется от части его применение в терапии опухолей. Цель облучения не в том, чтобы убить опухолевые клетки в интерфазе, а в том, чтобы они утратили способность к митозу, что приведет к замедлению или прекращению роста опухоли. Излучение в дозах не летальных для клетки может вызвать мутации, приводящие к усиленной пролиферации измененных клеток и дать начало злокачественному росту, как это часто случалось с теми, кто работал с рентгеновскими лучами, не зная об их опасности.

На пролиферацию клеток влияют многие химические вещества, в том числе лекарственные препараты. Например, алкалоид, колхицин (его содержат клубнелуковицы безвременника) был первым лекарственным препаратом, который снимал боль в суставах при подагре. Выяснилось, что он обладает и другим действием – останавливать деление путём связывания с белками тубулинами из которых формируются микротрубочки. Таким образом, колхицин, как и многие другие препараты блокируют образование веретена деления.

На этом основании, такие алкалоиды как винбластин и винкристин применяются для лечения некоторых видов злокачественных новообразований, входя в арсенал современных химиотерапевтических противораковых средств. Следует отметить, что способность веществ типа колхицина останавливать митоз , используется как метод для последующей идентификации хромосом в медицинской генетике.

Большое значение для медицины имеет способность дифференцированных (причем половых) клеток сохранять свои потенции к пролиферации, что приводит иногда к развитию в яичниках опухолей, на разрезе которых видны клеточные пласты, ткани, органы представляющие собой "мешанину". Выявляются клочки кожи, волосяных фолликулов, волос, уродливых зубов, кусочков костей, хряща, нервной ткани, фрагментов глаза и т.д., что требует срочного хирургического вмешательства.

2.5. Патология репродукции клеток
Аномалии митотического цикла .. Митотический ритм, обычно адекватный потребности восстановления стареющих, погибших клеток, в условиях патологии может быть изменен. Замедление ритма наблюдается в стареющих или маловаскуляризированных тканях, увеличение ритма - в тканях при разных видах воспаления, гормональных воздействиях, в опухолях и др.

РЕГУЛЯЦИЯ КЛЕТОЧНОГО ЦИКЛА

    Введение

    Активация пролиферации

    Клеточный цикл

    Регуляция клеточного цикла

    Экзогенные регуляторы пролиферации

    Эндогенные регуляторы клеточного цикла

    Пути регуляции CDK

    Регуляция G1 фазы

    Регуляция S фазы

    Регуляция G2 фазы

    Регуляция митоза

    Повреждения ДНК

    Пути восстановления двуцепочечных разрывов ДНК

    Клеточный ответ на повреждение ДНК и его регуляция

    Регенерация тканей

    Регуляция регенерации тканей

    Заключение

    Список литературы

Введение

Клетка является элементарной единицей всего живого. Вне клетки жизни нет. Размножение клеток происходит только путем деления исходной клетки, которому предшествует воспроизведение ее генетического материала. Активация деления клетки происходит вследствие воздействия на нее внешних или внутренних факторов. Процесс деления клетки с момента ее активации называется пролиферацией. Иными словами, пролиферация - это размножение клеток, т.е. увеличение числа клеток (в культуре или ткани), происходящее путем митотических делений. Время существования клетки как таковой, от деления до деления, обычно называют клеточным циклом

Во взрослом организме человека, клетки различных тканей и органов имеют неодинаковую способность к делению. Кроме того, при старении интенсивность пролиферации клеток снижается (т.е. увеличивается интервал между митозами). Встречаются популяции клеток, полностью потерявшие свойство делиться. Это, как правило, клетки, находящиеся на терминальной стадии дифференцировки, например, зрелые нейроны, зернистые лейкоциты крови, кардиомиоциты. В этом отношении исключение составляют иммунные В- и Т- клетки памяти, которые, находясь в конечной стадии дифференцировки, при появлении в организме определенного стимула в виде ранее встречавшегося антигена способны начать пролиферировать. В организме есть постоянно обновляющиеся ткани - различные типы эпителия, кроветворные ткани. В таких тканях существуют клетки, которые постоянно делятся, заменяя отработавшие или погибающие типы клеток (например, клетки крипт кишечника, клетки базального слоя покровного эпителия, кроветворные клетки костного мозга). Также в организме существуют клетки, которые не размножаются в обычных условиях, но вновь приобретают это свойство при определенных условиях, в частности при необходимости регенерации тканей и органов. Процесс пролиферации клеток жестко регулируется как самой клеткой (регуляция клеточного цикла, прекращение или замедление синтеза аутокринных ростовых факторов и их рецепторов), так и ее микроокружением (отсутствие стимулирующих контактов с соседними клетками и матриксом, прекращение секреции и/или синтеза паракринных ростовых факторов). Нарушение регуляции пролиферации приводит к неограниченному делению клетки, что в свою очередь инициирует развитие онкологического процесса в организме.

Активация пролиферации

Основную функцию, связанную с инициацией пролиферации, берет на себя плазматическая мембрана клетки. Именно на ее поверхности происходят события, которые связаны с переходом покоящихся клеток в активированное состояние, предшествующее делению. Плазматическая мембрана клеток за счет располагающихся в ней молекул-рецепторов воспринимает различные внеклеточные митогенные сигналы и обеспечивает транспорт в клетку необходимых веществ, принимающих участие в инициации пролиферативного ответа. Митогенными сигналами могут служить контакты между клетками, между клеткой и матриксом, а также взаимодействие клеток с различными соединениями, стимулирующими их вступление в клеточный цикл, которые получили название факторов роста. Клетка, получившая митогенный сигнал на пролиферацию, запускает процесс деления.

КЛЕТОЧНЫЙ ЦИКЛ

Весь клеточный цикл состоит из 4 этапов: пресинтетического (G1), синтетического (S), постсинтетического (G2) и собственно митоза (М). Кроме того, существует так называемый G0-период, характеризующий состояние покоя клетки. В G1-периоде клетки имеют диплоидное содержание ДНК на одно ядро. В этот период начинается рост клеток, главным образом, за счет накопления клеточных белков, что обусловлено увеличением количества РНК на клетку. Кроме того, начинается подготовка к синтезу ДНК. В следующем S-периоде происходит удвоение количества ДНК и соответственно удваивается число хромосом. Постсинтетическая G2 фаза называется также премитотической. В этой фазе происходит активный синтез мРНК (матричная РНК). Вслед за этой стадией следует собственно деление клетки надвое или митоз.

Деление всех эукариотических клеток связано с конденсацией удвоенных (реплицированных) хромосом. В результате деления эти хромосомы переносятся в дочерние клетки. Такой тип деления эукариотических клеток - митоз (от греч. mitos - нити) - является единственным полноценным способом увеличения числа клеток. Процесс митотического деления подразделяют на несколько этапов: профаза, прометафаза, метафаза, анафаза, телофаза.

РЕГУЛЯЦИЯ КЛЕТОЧНОГО ЦИКЛА

Назначение регуляторных механизмов клеточного цикла состоит не в регуляции прохождения клеточного цикла как такового, а в том, чтобы обеспечить, в конечном счете, безошибочность распределения наследственного материала в процессе репродукции клеток. В основе регуляции размножения клеток лежит смена состояний активной пролиферации и пролиферативного органа. Регуляторные факторы, контролирующие размножение клеток можно условно разделить на две группы: внеклеточные (или экзогенные) или внутриклеточные (или эндогенные). Экзогенные факторы находятся в микроокружении клетки и взаимодействуют с поверхностью клетки. Факторы, которые синтезируются самой клеткой и действуют внутри нее, относятся к эндогенным факторам. Такое подразделение весьма условно, поскольку некоторые факторы, будучи эндогенными по отношению к продуцирующей их клетке, могут выходить из нее и действовать как экзогенные регуляторы на другие клетки. Если регуляторные факторы взаимодействуют с теми же клетками, которые их продуцируют, то такой тип контроля называется аутокринным. При паракринном контроле синтез регуляторов осуществляется другими клетками.

ЭКЗОГЕННЫЕ РЕГУЛЯТОРЫ ПРОЛИФЕРАЦИИ

У многоклеточных организмов регуляция пролиферации различных типов клеток происходит вследствие действия не одного какого-либо ростового фактора, а их совокупности. Кроме того, некоторые ростовые факторы, будучи стимуляторами для одних типов клеток, ведут себя как ингибиторы по отношению к другим. Классические ростовые факторы представляют собой полипептиды с молекулярной массой 7-70 кДа. К настоящему моменту известно более сотни таких ростовых факторов. Однако здесь будут рассмотрены только некоторые из них.

Пожалуй, самое большое количество литературы посвящено фактору роста из тромбоцитов (PDGF). Освобождаясь при разрушении сосудистой стенки, PDGF участвует в процессах тромбообразования и заживления ран. PDGF является мощным ростовым фактором для покоящихся фибробластов. Наряду с PDGF, не менее обстоятельно изучен эпидермальный фактор роста (EGF), который также способен стимулировать пролиферацию фибробластов. Но, кроме этого также стимулирующе влияет и на другие типы клеток, в частности на хондроциты.

Большую группу ростовых факторов составляют цитокины (интерлейкины, факторы некроза опухоли, колоние-стимулирующие факторы и т.д.). Все цитокины полифункциональны. Они могут, как усиливать, так и угнетать пролиферативные ответы. Так, например, разные субпопуляции CD4+ Т-лимфоцитов, Th1 и Th2, продуцирующие разный спектр цитокинов, по отношению друг к другу являются антагонистами. То есть, Th1 цтокины стимулируют пролиферацию клеток, которые их продуцируют, но в то же время подавляют деление Th2 клеток, и наоборот. Таким образом, в норме в организме сохраняется постоянный баланс этих двух типов Т-лимфоцитов. Взаимодействие факторов роста с их рецепторами на поверхности клетки приводит к запуску целого каскада событий внутри клетки. В результате чего происходит активация факторов транскрипции и экспрессия генов пролиферативного ответа, что в конечном итоге инициирует репликацию ДНК и вступление клетки в митоз.

ЭНДОГЕННЫЕ РЕГУЛЯТОРЫ КЛЕТОЧНОГО ЦИКЛА

В нормальных эукариотических клетках прохождение клеточного цикла жестко регулируется. Причиной онкологических заболеваний является трансформация клеток, как правило, связанная с нарушениями регуляторных механизмов клеточного цикла. Одним из основных результатов дефективности клеточного цикла является генетическая нестабильность, поскольку клетки с ущербным контролем клеточного цикла теряют способность корректно удваивать и распределять между дочерними клетками свой геном. Генетическая нестабильность приводит к приобретению новых особенностей, которые отвечают за прогрессирование опухоли. Циклин-зависимые киназы (CDK)и их регуляторные субъединицы (циклины) являются основными регуляторами клеточного цикла. Прохождение клеточного цикла достигается путем последовательной активации и дезактивации разных комплексов циклин-CDK. Действие комплексов циклин-CDK заключается в фосфорилировании ряда белков-мишеней в соответствии с фазой клеточного цикла, в которой активен тот или иной комплекс циклин-CDK . Так, например, циклин Е-CDK2 активен в поздней G1 фазе и фосфорилирует белки, необходимые для прохождения через позднюю G1 фазу и вход в S фазу. Циклин А-CDK2 активен в S и G2 фазах, он обеспечивает прохождение S фазы и вход в митоз. Циклин А и циклин Е являются центральными регуляторами репликации ДНК. Поэтому неправильная регуляция экспрессии какого-либо из этих циклинов приводит к генетической нестабильности. Было показано, что накопление ядерного циклина А происходит исключительно в тот момент, когда клетка входит в S фазу, т.е. в момент G1/S перехода. С другой стороны, было показано, что уровень циклина Е повышался после прохождения так называемой точки ограничения (R-точки) в поздней G1 фазе, а затем существенно понижался, когда клетка входила в S фазу.

ПУТИ РЕГУЛЯЦИИ CDK

Активность циклин-зависимых киназ (CDK) жестко регулируется, по крайней мере, по четырем механизмам:

1) Основной способ регуляции CDK - это связывание с циклином, т.е. в свободном виде киназа не активна, и только комплекс с соответствующим циклином обладает необходимыми активностями.

2) Активность комплекса циклин-CDK также регулируется за счет обратимого фосфорилирования. Для того чтобы приобрести активность, необходимо фосфорилирование CDK, которое осуществляется при участии CDK активирующего комплекса (САК), состоящего из циклина Н, CDK7 и Mat1.

3) С другой стороны, в молекуле CDK, в регионе, ответственном за связывание субстрата, имеются сайты, фосфорилирование которых приводит к ингибированию активности комплекса циклин-CDK. Эти сайты фосфорилируются группой киназ, включая Wee1 киназу, и дефосфорилируются фосфатазами Cdc25. Активность этих ферментов (Wee1 и Cdc25) существенно варьирует в ответ на разные внутриклеточные события, такие как повреждения ДНК.

4) В конце концов, некоторые комплексы циклин-CDK могут быть заингибированы вследствие связывания с ингибиторами CDK (CKI). Ингибиторы CDK состоят из двух групп белков INK4 и CIP/KIP. Ингибиторы INK4 (p15, p16, p18, p19) связываются с CDK4 и CDK6 и инактивируют их, предотвращая взаимодействие с циклином D. CIP/KIP ингибиторы (p21, p27, p57) могут связываться с комплексами циклин-CDK, содержащими CDK1, CDK2, CDK4 и CDK6. Примечательно, что при определенных условиях CIP/KIP ингибиторы могут усиливать киназную активность комплексов циклин D-CDК4/6

РЕГУЛЯЦИЯ G 1 ФАЗЫ

В G1 фазе, в так называемой точке рестрикции (ограничения, R-точка), клетка принимает решение, делится ей или нет. Точка рестрикции - это та точка клеточного цикла, после которой клетка становится невосприимчивой к внешним сигналам вплоть до завершения всего клеточного цикла. Точка рестрикции делит G1 фазу на два функционально различных этапа: G1pm (постмитотический этап) и G1ps (пресинтетический этап). В течение G1pm клетка оценивает присутствующие в ее окружении ростовые факторы. Если необходимые ростовые факторы присутствуют в достаточном количестве, то клетка переходит в G1ps. Клетки, перешедшие в G1ps период, продолжают нормальное прохождение всего клеточного цикла даже при отсутствии ростовых факторов. Если отсутствуют необходимые ростовые факторы в G1pm периоде, то клетка переходит в состояние пролиферативного покоя (G0 фаза).

Основным результатом каскада сигнальных событий, происходящих вследствие связывания ростового фактора с рецептором на поверхности клетки, является активация комплекса циклин D-CDK4/6. Активность этого комплекса существенно возрастает уже в раннем G1 периоде. Этот комплекс фосфорилирует мишени, необходимые для прохождения в S фазу. Основным субстратом комплекса циклин D-CDK4/6 является продукт гена ретинобластомы (pRb). Нефосфорилированный pRb связывается и, тем самым, инактивирует транскрипционные факторы группы E2F. Фосфорилирование pRb комплексами циклин D-CDK4/6 приводит к высвобождению E2F, который проникает в ядро и инициирует трансляцию генов белков, необходимых для репликации ДНК, в частности генов циклина Е и циклина А. В конце G1 фазы происходит кратковременное увеличение количества циклина Е, которое предвещает накопление циклина А и переход в S фазу.

Остановку клеточного цикла в G1 фазе могут вызвать следующие факторы: повышение уровня ингибиторов CDK, депривация ростовых факторов, повреждения ДНК, внешние воздействия, онкогенная активация

РЕГУЛЯЦИЯ S ФАЗЫ

S фаза - это этап клеточного цикла, когда происходит синтез ДНК. Каждая из двух дочерних клеток, которые образуются в конце клеточного цикла, должна получить точную копию ДНК материнской клетки. Каждое основание молекул ДНК, составляющих 46 хромосом человеческой клетки, должно быть скопировано только один раз. Именно поэтому синтез ДНК регулируется крайне жестко.

Было показано, что только ДНК клеток, находящихся в G1 или S фазе, может реплицироваться. Это наводит на мысль, что ДНК должна быть <лицензирована> для репликации и что тот кусочек ДНК, который был удвоен, теряет эту <лицензию>. Репликация ДНК начинается в месте связывания белков, называемых ORC (Origin of replicating complex). Несколько компонентов, необходимых для синтеза ДНК, связываются с ORC в поздней М или ранней G1 фазе, формируя пререплекативный комплекс, что собственно и дает <лицензию> ДНК для репликации. На стадии перехода G1/S к пререплекативному комплексу добавляются еще белки, необходимые для репликации ДНК, таким образом, образуется комплекс инициации. Когда начинается процесс репликации и образуется репликативная вилка, многие компоненты отделяются от инициирующего комплекса, а в месте инициации репликации остаются только компоненты пострепликативного комплекса.

Во многих работах было показано, что для нормального функционирования инициирующего комплекса необходима активность циклин А-CDK2. Кроме того, для успешного окончания S фазы также необходима активность комплекса циклин А-CDK2, что, собственно, и является основным регуляторным механизмом, обеспечивающим успешное завершение синтеза ДНК. Остановку в S фазе может индуцировать повреждение ДНК.

РЕГУЛЯЦИЯ G 2 ФАЗЫ

G2 фаза - это этап клеточного цикла, который начинается после завершения синтеза ДНК, но до начала конденсации. Основным регулятором прохождения G2 фазы служит комплекс циклин В-CDK2. Арест клеточного цикла в G2 фазе происходит вследствие инактивации комплекса циклин В-CDK2. Регулятором перехода G2/М является комплекс циклин В-CDK1, его фосфорилирование/дефосфорилирование регулирует вход в М фазу. Повреждения ДНК или наличие нереплицированных участков предотвращает переход в М фазу.

Пролиферативные процессы при остром воспалении начинаются вскоре после воздействия флогогенного фактора на ткань и более выражены по периферии зоны воспаления. Одним из условий оптимального течения пролифрации является затухание процессов альтерации и экссудации.

Пролиферация

Фагоциты также продуцируют и выделяют в межклеточную жидкость ряд БАВ, регулирующих развитие либо иммунитета, либо аллергии, либо состояния толерантности. Таким образом, воспаление непосредственно связано с формированием иммунитета или иммунопатологических реакций в организме.

Пролиферация - компонент воспалительного процесса и завершающая его стадия - характеризуется увеличением числа стромальных и, как правило, паренхиматозных клеток, а также образованием межклеточного вещества в очаге воспаления, Эти процессы направлены на регенерацию альтерированных и/или замещение разрушенных тканевых элементов. Существенное значение на этой стадии воспаления имеют различные БАВ, в особенности стимулирующие пролиферацию клеток (митогены).

Формы и степень пролиферации органоспецифических клеток различны и определяются характером клеточных популяций (см. статью «Популяция клеток» в приложении «Справочник терминов»).

У части органов и тканей (например, печени, кожи, ЖКТ, дыхательных путей) клетки обладают высокой пролиферативной способностью, достаточной для ликвидации дефекта структур в очаге воспаления.

У других органов и тканей эта способность весьма ограничена (например, у тканей сухожилий, хрящей, связок, почек и др.).

У ряда органов и тканей паренхиматозные клетки практически не обладают пролиферативной активностью (например, миоциты сердечной мышц, нейроны). В связи с этим при завершении воспалительного процесса в тканях миокарда и нервной системы на месте очага воспаления пролиферируют клетки стромы, в основном фибробласты, которые образуют и неклеточные структуры. В результате этого формируется соединительнотканный рубец. Вместе с тем известно, что паренхиматозные клетки указанных тканей обладают высокой способностью к гипертрофии и гиперплазии субклеточных структур.

Активация пролиферативных процессов коррелирует с образованием БАВ, обладающих антивоспалительным эффектом (своеобразных противовоспалительных медиаторов). К числу наиболее действенных среди них относятся:

Ингибиторы гидролаз, в частности протеаз (например, антитрипсина),  ‑микроглобулина, плазмина или факторов комплемента;

Антиоксиданты (например, церулоплазмин, гаптоглобин, пероксидазы, СОД);

Полиамины (например, путресцин, спермин, кадаверин);

Глюкокортикоиды;

Гепарин (подавляющий адгезию и агрегацию лейкоцитов, активность кининов, биогенных аминов, факторов комплемента).



Замещение погибших и повреждённых при воспалении тканевых элементов отмечается после деструкции и элиминации их (этот процесс получил название раневого очищения).

Реакции пролиферации как стромальных, так и паренхиматозных клеток регулируется различными факторами. К числу наиболее значимых среди них относят:

Многие медиаторы воспаления (например, ФНО, подавляющий пролиферацию; лейкотриены, кинины, биогенные амины, стимулирующие деление клеток).

Специфические продукты метаболизма лейкоцитов (например, монокины, лимфокины, ИЛ, факторы роста), а также тромбоцитов, способные активировать пролиферацию клеток.

Низкомолекулярные пептиды, высвобождающиеся при деструкции тканей, полиамины (путресцин, спермидин, спермин), а также продукты распада нуклеиновых кислот, активирующие размножение клеток.

Гормоны (СТГ, инсулин, T 4 , кортикоиды, глюкагон), многие из них способные как активировать, так и подавлять пролиферацию в зависимости от их концентрации, активности, синергических и антагонистических взаимодействий; например, глюкокортикоиды в низких дозах тормозят, а минералокортикоиды - активируют реакции регенерации.

На процессы пролиферации оказывает влияние и ряд других факторов, например, ферменты (коллагеназа, гиалуронидаза), ионы, нейромедиаторы и другие.

Пролиферация является завершающей фазой развития воспаления, обеспечивающей репаративную регенерацию тканей на месте очага альтерации.

Пролиферация развивается с самого начала воспаления наряду с явлениями альтерации и экссудации.

Размножение клеточных элементов начинается по периферии зоны воспаления, в то время как в центре очага могут еще прогрессировать явления альтерации и некроза.

Полного развития пролиферация соединительнотканных и органоспецифическихклеточных элементов достигает после "очистки" зоны повреждения от клеточного детрита и инфекционных возбудителей воспаления тканевыми макрофагами и нейтрофилами. В связи с этим следует отметить, что процессу пролиферации предшествует образование нейтрофильного и моноцитарного барьеров, которые формируются по периферии зоны альтерации.

Восстановление и замещение поврежденных тканей начинается с выхода из сосудов молекул фибриногена и образования фибрина, который формирует своеобразную сетку, каркас для последующего клеточного размножения. Уже по этому каркасу распределяются в очаге репарации быстро образующиеся фибробласты.

Деление, рост и перемещение фибробластов возможно только после их связывания с фибрином или коллагеновыми волокнами. Эта связь обеспечивается особым белком - фибронектином.

Размножение фибробластов начинается по периферии зоны воспаления, обеспечивая формирование фибробластического барьера. Сначала фибробласты - незрелые и не обладают способностью синтезировать коллаген. Созреванию предшествует внутренняя структурно-функциональная перестройка фибробластов: гипертрофия ядра и ядрышка, гиперплазия ЭПС, повышение содержания ферментов, особенно щелочной фосфатазы, неспецифической эстеразы, b-глюкуронидазы. Только после перестройки начинается коллагеногенез.

Интенсивно размножающиеся фибробласты продуцируют кислые мукополисахариды - основной компонент межклеточного вещества соединительной ткани (гиалуроновую кислоту, хондроитинсерную кислоту, глюкозамин, галактозамин).

При этом зона воспаления не только инкапсулируется, но и возникает постепенная миграция клеточных и бесклеточных компонентов соединительной ткани от периферии к центру, формирование соединительнотканного остова на месте первичной и вторичной альтерации.

Наряду с фибробластами размножаются и другие тканевые и гематогенные клетки. Из тканевых клеток пролиферируют эндотелиальные клетки, которые формируют новые капилляры. Вокруг новообразующихся капилляров концентрируются тучные клетки, макрофаги, нейтрофилы, которые освобождают биологически активные вещества, способствующие пролиферации капилляров.

Фибробласты вместе с вновь образованными сосудами образуют грануляционную ткань. Это, по существу, молодая соединительная ткань, богатая клетками и тонкостенными капиллярами, петли которых выступают над поверхностью ткани в виде гранул.

Основными функциями грануляционной ткани являются: защитная - предотвращает влияние факторов окружающей среды на очаг воспаления, и репаративная - заполнение дефекта и восстановление анатомической и функциональной полноценности поврежденных тканей.

Формирование грануляционной ткани не строго обязательно. Это зависит от величины и глубины повреждения. Грануляционная ткань обычно не развивается при заживлении ушибленных кожных ранок или мелких повреждений слизистой оболочки (Кузин М.И., Костюченок Б.М. и др.,1990).

Грануляционная ткань постепенно превращается в волокнистую ткань, называемую рубцом.

В рубцовой ткани уменьшается количество сосудов, они запустевают, уменьшается количество макрофагов, тучных клеток, снижается активность фибробластов.

Небольшая часть клеточных элементов, располагающаяся среди коллагеновых нитей, сохраняет активность. Предполагают, что сохранившие активность тканевые макрофаги принимают участие в рассасывании рубцовой ткани и обеспечивают формирование более мягких рубцов.

Параллельно с созреванием грануляций происходит эпителизация раны. Она начинается в первые часы после повреждения, и уже в течение первых суток образуются 2-4 слоя клеток базального эпителия.

Скорость эпителизацииобеспечиваетсяследующими процессами: миграцией, делением и дифференцировкой клеток. Эпителизация небольших ран осуществляется в основном за счет миграции клеток из базального слоя. Раны более крупные эпителизируются за счет миграции и митотического деления клеток базального слоя, а также дифференцировки регенерирующего эпидермиса. Новый эпителий образует границу между поврежденным и подлежащим слоем, он препятствует обезвоживанию тканей раны, уменьшению в ней электролитов и белков, а также предупреждает инвазию микроорганизмов.

В процессе пролиферации участвуют и органоспецифические клеточные элементы органов и тканей. С точки зрения возможностей пролиферации органоспецифических клеточных элементов все органы и ткани могут быть расклассифицированы на три группы:

К первой группе могут быть отнесены органы и ткани, клеточные элементы которых обладают активной или практически неограниченной пролиферацией, достаточной для полного восполнения дефекта структуры в зоне воспаления (эпителий кожи, слизистых оболочек дыхательных путей, слизистой желудочно-кишечного тракта, мочеполовой системы, гемопоэтическая ткань и др.).

Ко второй группе относятся ткани с ограниченными регенерационными способностями (сухожилия, хрящи, связки, костная ткань, периферические нервные волокна).

К третьей группе относятся те органы и ткани, где органоспецифические клеточные элементы не способны к пролиферации (сердечная мышца, клетки ЦНС).

Факторами, стимулирующими развитие процессов пролиферации являются:

1. Проколлаген и коллагеназа фибробластов взаимодействующие по типу ауторегуляции и обеспечивающие динамическое равновесие между процессами синтеза и разрушения соединительной ткани.

2. Фибронектин, продуцируемый фибробластами, детерминирует миграцию, пролиферацию и адгезию клеток соединительной ткани.

3. Фактор стимуляции фибробластов, секретируемый тканевыми макрофагами, обеспечивает размножение фибробластов и их адгезивные свойства.

4. Цитокины мононуклеаров стимулируют пролиферативные процессы в поврежденной ткани (ИЛ-1, ФНО, эпидермальный, тромбоцитарный, фибробластический факторы роста хемотаксические факторы). Некоторые цитокины могут ингибировать пролиферацию фибробластов и образование коллагена.

5. Пептид гена, родственного кальцитонину, стимулирует пролиферацию эндотелиальных клеток, а субстанция Р индуцирует выработку ФНО в макрофагах, что приводит к усиленному ангиогенезу.

6. Простагландины группы Е потенцируют регенерацию путем усиления кровоснабжения.

7. Кейлоны и антикейлоны, продуцируемые различными клетками, действуя по принципу обратной связи, могут активировать и угнетать митотические процессы в очаге воспаления (Бала Ю.М., Лифшиц В.М., Сидельникова В.И., 1988).

8. Полиамины (путресцин, спермидин, спермин), обнаруживаемые во всех клетках млекопитающих жизнено необходимы для роста и деления клеток.

Они обеспечивают стабилизацию плазматических мембран и суперспиральной структуры ДНК, защиту ДНК от действия нуклеаз, стимуляцию транскрипции, метилирование РНК и связывание ее с рибосомами, активацию ДНК-лигаз, эндонуклеаз, протеинкиназ и многие другие клеточные процессы. Усиленный синтез полиаминов, способствующих пролиферативным процессам, отмечается в очаге альтерации (Березов Т.Т., Федорончук Т.В., 1997).

9. Циклические нуклеотиды: цАМФ ингибирует, а цГМФ активирует процессы пролиферации.

10. Умеренные концентрации биологически активных веществ и ионов водорода являются стимуляторами регенераторных процессов.

Еще по теме Механизмы развития пролиферации в очаге воспаления:

  1. Общая характеристика и механизмы развития сосудистых реакций в очаге острого воспаления. Механизмы активации тромбообразования в очаге воспаления
  2. Механизмы эмиграции лейкоцитов. Роль лейкоцитов в очаге воспаления
  3. Нервно-трофические влияния и пролиферация при воспалении
  4. Особенности нарушения обмена веществ в очаге воспаления
  5. Молекулярно-клеточные механизмы развития первичной и вторичной альтерации. Классификация медиаторов воспаления. Характеристика их биологического действия
  6. Особенности развития воспалительной реакции в зависимости от локализации воспаления, реактивности организма, характера этиологического фактора. Роль возраста в развитии воспаления

Можно считать доказанным, что исходным элементом всей системы клеток крови является стволовая клетка, полипотентная, способная к многочисленным разнообразным дифференцировкам и в то же время обладающая способностью к самоподдержанию, т. е. к пролиферации без видимой дифференцировки.

Отсюда следует, что принципы управления системой кроветворения должны обеспечивать такую ее регуляцию, в результате которой при стабильном кроветворении выполняются следующие два основных условия: число продуцируемых клеток каждого типа постоянно и строго соответствует числу погибших зрелых клеток; число стволовых клеток постоянно, и образование новых стволовых клеток точно соответствует числу их, ушедших в дифференцировку.

Еще более сложные задачи решаются при стабилизации системы после возмущающего воздействия. В этом случае число образующихся стволовых клеток должно превышать число ушедших в дифференцировку до тех пор, пока величина отдела не достигает исходного уровня, после чего вновь должны быть установлены сбалансированные отношения между числом новообразующихся и дифференцирующихся стволовых клеток.

С другой стороны, дифференцировка стволовых клеток должна регулироваться так, чтобы восстановить число зрелых клеток только того ряда, который оказался уменьшенным (например, эритроидные клетки после кровопотери) при стабильной продукции других клеток. И здесь после усиленного новообразования данной категории клеток ее продукция должна быть снижена до сбалансированного уровня.

Количественная регуляция кроветворения , т. е. обеспечение образования необходимого числа клеток нужного типа в определенное время, осуществляется в последующих отделах, прежде всего в отделе коммитированных предшественников.

Стволовая клетка обладает двумя основными свойствами: способностью к самоподдержанию, достаточно длительному, сравнимому со временем существования всего многоклеточного организма, и способностью к дифференцировке. Так как последняя, видимо, необратима, «принявшая решение» о дифферсицировке стволовая клетка необратимо покидает отдел.

Итак, важнейшая проблема регуляции в этом отделе состоит в том, чтобы при повышении запроса дифференцировке нe подвергались бы все стволовые клетки, после чего регенерация кроветворения оказалась бы невозможной в связи с истощением способных к самоподдержанию элементов, так как клетки всех последующих отделов к длительному самоподдержанию не способны. Такая регуляция в организме действительно существует. После облучения в высоких дозах практически вся кроветворная система погибает. Между тем, например, у мыши, регенерация возможна после того, как облучением уничтожено 99,9% всех стволовых клеток (Bond е. а., 1965). Несмотря на огромный запрос на дифференцировку, сохранившиеся 0,1% стволовых клеток восстанавливают свое число и обеспечивают резкое повышение дифференцировки клеток последующих отделов.