Функции нейронных сетей в головном мозге. Функции нейрона. Какую функцию выполняют нейроны. Функция двигательного нейрона. Различные названия нейронов

Сегодня мы рассмотрим такие вопросы как: что такое мозг, из чего он состоит , какие функции выполняет и каким образом мы мыслим, вспоминаем и принимаем решения.

Что такое головной мозг и из чего состоит?

Это наш центральный процессор, системный администратор нашего тела, это орган ЦНС (Центральной нервной системы). От животных мы отличаемся способностью мыслить и прогнозировать, принимать невыгодные решения, но во благо других людей.

Почти 80% мозга состоит из воды (в основном в цитоплазме клеток), а еще 10-12% липидов (жира) и 8% протеина. Хотя на его долю приходится всего 2% от массы тела, головной мозг использует полностью 20-25% поставок организмом кислорода, питательных веществ и глюкозы (в качестве топлива), все из которых поставляются постоянным потоком крови. Головной мозг защищен толстыми костями черепа и гематоэнцефалическим барьером, но характер (как сложной системы) человеческого мозга, тем не менее, делает его неустойчивым ко многим видам заболеваний.

Около 100 миллиардов нейронов передают сигналы друг другу с помощью 1000 триллионов синаптических связей. Происходит постоянный приток и анализ различной информации из вне.

Мозг отвечает за контроль всех телесных действий и функций. Это также центр мышления, обучения и памяти. Мозг дает нам способности, чтобы думать, планировать, говорить, представлять, спать, использовать разум и эмоции.

Как мы размышляем?

В данный момент вы читаете этот текст, вы видите каждую букву, понимаете ее. Разберемся, почему же вы понимаете, что читаете и, твердо убеждены в правильности своих мыслей.

Это задача не из легких, но любую задачу можно решить, применив метод анализа, тоесть дробления сложного вопроса на понятные элементы, соответствующую статью сайт скоро выпустит.

  1. Органы чувств. Они так называются, потому что взаимодействуют с окружающим вас миром. Выделяют 6 органов чувств: глаза, уши, нос, кожа, язык и вестибулярный аппарат. У животных в процессе эволюции были развиты еще и эхо-локация, ощущение магнитного поля Земли и другие чувства.

С органами чувств разбираться глубоко не будем, итак понятно, что такое кожа или уши. Но вернемся к нашему примеру, мы читаем, задействуем свои глаза. Что происходит дальше.

  1. Рецепторы. Любой из органов чувств имеет свои рецепторы, это нервные клетки находящиеся «в связке» с каким-либо органом чувств. Рецепторы в глазах трансформируют картинку от глаз, упорядочивают ее. Систематизируется информацию об оттенках цветов, которые вы видите, где какой цвет находится, о различных физических предметах и их местоположении в пространстве, о многих других вещах. Вся систематизируемая информация направляются во вставочные нейроны.

В нашем примере с чтением, на этом этапе, вы еще ничего не понимаете.

  1. Вставочные нейроны. Это нейроны-посредники, они получают информацию от рецепторов и меняют ее в электрические сигналы. Что-то наподобие азбуки Морзе, только вместо букв и точек мы имеем картинку перед нашими глазами и эти самые электрические сигналы. Весь этот поток «летит» к коре головного мозга, к нейронам, находящимся в нем. Представьте, что нейрон – это проходная комната. И первыми «открывают дверь в комнату» дендриты.

Ваш мозг все еще не понимает слов.

  1. Дендриты – это «входная дверь» в нейрон, уже в мозге (на самом деле информация может «пробить стену и влететь в нейрон» и без двери). Дендрит ПОНИМАЕТ, что пришла какая-то информация. Но сам он нифига не понимает, что это значит. Для него вы читаете что-то вроде «N?n h?o, w? de x?nx?», непонятные слова, ошибка 404. Дендрит отправляет эту информацию в «дверь выхода» — аксон.
  2. Аксон в нервной клетке имеет множество ответвлений, он ищет совпадения поступающей информации в других нейронах. И находит их! Ваш мозг, ВНЕЗАПНО, осознает, что знает русский язык, так как информации полно в других нейронах. И «дорожки» от одного нейрона к другому постоянно используются, они надежные, крепкие. Параллельно с этим, в аксонах вырабатываются нейромедиаторы, отвечающие за наше настроение, энергию и здоровье. И вот нейроны поздравляют друг друга нейромедиаторами за «взаимное согласие и понимание».

Вот как работает мозг в познавательной деятельности !

Резюмируя: глаза/уши/язык.. собирают информацию, она накапливается в соответствующих рецепторах, те ее структурируют и посылают во вставочный нерв, где она трансформируется в электрические сигналы, эти сигналы принимают нервные клетки и их дендриты в коре мозга. Дендриты направляют эту информацию в аксон «на поиск соответствия». Аксон «ищет совпадения» через нейронные связи с другими нейронами. Все это происходит за доли секунды.

Если аксон не находит «совпадения», то создается тоненькая связь с новым нейроном (да, они все-таки создаются). Чем больше вы учите новой информации – тем больше создается связей и тем они крепче.

Обратное правило: если вы не учите что-то, забываете, то связи становятся тоньше. Но их можно быстро восстановить!

Рассмотрим еще 3 интересных примера: вы учитесь водить автомобиль(А), вам на голову летит кирпич(Б) и вы ищете по дому шариковую ручку(В).

А. Представьте, что вы впервые сели за руль. Вокруг столько кнопочек, 3 педали (ну или 2), всякие коробки, зеркала, так еще нужно представлять габариты автомобиля, понимать, «проеду ли я тут?». И ведь вы вроде знаете, что «выжимаем тормоз, снимаем с ручника…». Вы пробуете это делать, но руки не слушают, ноги, случайно, педали выжимают не до конца, забыли включить фары и т.д. Что происходит?

Связи между нейронами, где хранится память о вождении авто есть, но нет связей проходящих к мышцам. Цель обучения – создавать и укреплять эти нервно-мышечные связи и создавать новые между нейронами в мозге. Чем больше учишься – тем больше связей между нейронами и тем они крепче.

Замечали, как быстро вы выключаете будильник по утрам?)
Б. На вас летит кирпич! Типичная ситуация, с кем не бывало) Как только вы это осознаете, вы не ищете связи между нейронами с памятью о физике, вы не думаете, что «судя по его траектории, он пролетит мимо» или «он небольшой и попадет в плечо, а у меня толстая куртка и я ничего не почувствую». Как только до дендритов доходит информация «о летящем на вас кирпиче», вся логичность просто выключается, за дело берутся инстинкты, и вы отпрыгиваете, даже если у вас болит нога/спина/живот и вообще вам лень. Где есть угроза жизни – рулят инстинкты. Где нет – происходит поиск в нейронах мозга и нервно-мышечных связях.

В. Ищете ручку. Вам поступил важный звонок, нужно кое-что быстренько записать. Вы начинаете искать ручку, ищете глазами, спрашиваете у кого-то, нигде нет. Мозг работает очень активно, проверяются десятки тысяч связей между нейронами. Вырабатываются стрессовые нейромедиаторы, которые подгоняют мозг, как суровый офицер в армии гоняет солдат. Стресса еще больше, вдруг начинают проверяться альтернативные варианты как записать, и вы записываете на своем же телефоне, на компьютере, забираете чужой мобильник и там пишете, пытаетесь запомнить. Вам уже плевать на все, нужно тупо записать.

Все прошло, вы поговорили, информация «сохранена». Нейроны снова активно вырабатывают нейромедиаторы, но уже положительные, «поздравляю вас, коллега!»

Теперь понимаете, почему вы можете потерять дома мобильный, но никогда полностью не разучитесь водить машину.

И еще! Наверно вы слышали, что продавцы в магазинах часто дают подержать товар в руки – это не просто так! Таким образом у вас задействованы почти все органы чувств, вы видите товар, чувствуете его, еще и продавец его нахваливает (звук) – нейроны и связи создаются очень быстро. Быстрее, чем вы бы просто прочитали обзор на этот товар. Вот такая тонкая психология.)

Как мы мечтаем?

Мы можем мечтать абсолютно где угодно и когда угодно, это очень важная функция мозга! Мечты расслабляют человека, придают ему оптимизма, что, в конечном итоге, положительно сказывается на его отношении к окружающему миру. Ведь каким мы видим мир – такой он и есть.

Мечты добавляют осмысленность, логичность в нашу жизнь, как бы это странно не звучало. Они показывают к чему нам стремиться, и пока мы стремимся к мечте – мы счастливы.

Традиционно считается, что за мечты отвечает правое полушарие головного мозга. Формально это не совсем так, человек активно мечтает, когда «выключена» логика и рациональность + вырабатываются нейромедиаторы: эндорфин, ГАМК, серотонин, мелатонин. Необязательным условием является подавление «возбуждающих» нейромедиаторов.

Вспомните свое состояние, перед тем как начинаете мечтать, это монотонное и рутинное действие, когда вы не решаете никаких задач и нет стресса и «отключаетесь».
Что происходит в голове в момент «отключения» от реальности? Рассмотрим на примере.
Достаточно лишь одной маленькой, но приятной мысли. Вы идете по знакомой улице, ничего не мешает, не спешите, нет медведей и других опасностей. Заметили красивое дерево, оно вам напомнило что-то приятное. Аксон помог найти эту информацию в каком-то нейроне и выработал положительные нейромедиаторы.

Нейромедиаторы попали в клетку с этим воспоминанием, та, в свою очередь, «обрадовалась» этим положительным моментом и направила и в свой аксон запрос на поиск совпадений. Тот находит их очень быстро и их тысячи, везде вырабатываются положительные нейромедиаторы. В этом моменте, вы уже видите не просто «дерево», ваш мозг вам напомнил, как вы когда-то ездили с друзьями на озеро, шашлыки, музыка, лето. Аксоны активно ищут еще больше совпадений, и вот уже условно весь мозг рад) Он стремится продлить это воспоминание и «дорисовывает» еще больше красок + вы уже фантазируете о будущем, теперь «совпадения не ищутся», а «создаются» исходя из прошлых событий.

— А как пройти до улицы Ленина? — кто-то вас спросил.

Так, встряска, норадреналина нам, глутамата, «отрубить» весь мелатонин… Мозг очень быстро перестраивается, что от нас хотят? Как пройти до Ленина, аксонам приказываю искать ответ в нейронах…

(Через 2-3 секунды вы отвечаете) – А, это вам туда до упора.

Вы, вдруг, осознаете, что не помните, как прошли последние 100-200 метров. Ведь только что были «шашлыки, озеро». Случалось?

Нервная система контролирует, координирует и регулирует согласованную работу всех систем органов, поддержание постоянства состава его внутренней среды (благодаря этому организм человека функционирует как единое целое). При участии нервной системы осуществляется связь организма с внешней средой.

Нервная ткань

Нервная система образована нервной тканью , которая состоит из нервных клеток - нейронов и мелких клеток спутников (глиальных клеток ), которых примерно в 10 раз больше, чем нейронов.

Нейроны обеспечивают основные функции нервной системы: передачу, переработку и хранение информации. Нервные импульсы имеют электрическую природу и распространяются по отросткам нейронов.

Клетки спутники выполняют питательную, опорную и защитную функции, способствуя росту и развитию нервных клеток.

Строение нейрона

Нейрон - основная структурная и функциональная единица нервной системы.

Структурно-функциональной единицей нервной системы является нервная клетка – нейрон . Его основными свойствами являются возбудимость и проводимость.

Нейрон состоит из тела и отростков .

Короткие, сильно ветвящиеся отростки - дендриты , по ним нервные импульсы поступают к телу нервной клетки. Дендритов может быть один или несколько.

Каждая нервная клетка имеет один длинный отросток - аксон , по которому импульсы направляются от тела клетки . Длина аксона может достигать нескольких десятков сантиметров. Объединяясь в пучки, аксоны образуют нервы .

Длинные отростки нервной клетки (аксоны) покрыты миелиновой оболочкой . Скопления таких отростков, покрытых миелином (жироподобным веществом белого цвета), в центральной нервной системе образуют белое вещество головного и спинного мозга.

Короткие отростки (дендриты) и тела нейронов не имеют миелиновой оболочки, поэтому они серого цвета. Их скопления образуют серое вещество мозга.

Нейроны соединяются друг с другом таким образом: аксон одного нейрона присоединяется к телу, дендритам или аксону другого нейрона. Место контакта одного нейрона с другим называется синапсом . На теле одного нейрона насчитывается 1200–1800 синапсов.

Синапс - пространство между соседними клетками, в котором осуществляется химическая передача нервного импульса от одного нейрона к другому.

Каждый синапс состоит из трёх отделов :

  1. мембраны, образованной нервным окончанием (пресинаптическая мембрана );
  2. мембраны тела клетки (постсинаптическая мембрана );
  3. синаптической щели между этими мембранами

В пресинаптической части синапса содержится биологически активное вещество (медиатор ), которое обеспечивает передачу нервного импульса с одного нейрона на другой. Под влиянием нервного импульса медиатор выходит в синаптическую щель, действует на постсинаптическую мембрану и вызывает возбуждение в теле клетки следующего нейрона. Так через синапс передается возбуждение от одного нейрона к другому.

Распространение возбуждения связано с таким свойством нервной ткани, как проводимость .

Типы нейронов

Нейроны различаются по форме

В зависимости от выполняемой функции выделяют следующие типы нейронов:

  • Нейроны, передающие сигналы от органов чувств в ЦНС (спинной и головной мозг), называют чувствительными . Тела таких нейронов располагаются вне ЦНС, в нервных узлах (ганглиях). Нервный узел представляет собой скопление тел нервных клеток за пределами центральной нервной системы.
  • Нейроны, передающие импульсы от спинного и головного мозга к мышцам и внутренним органам называют двигательными . Они обеспечивают передачу импульсов от ЦНС к рабочим органам.
  • Связь между чувствительными и двигательными нейронами осуществляется с помощью вставочных нейронов через синаптические контакты в спинном и головном мозге. Вставочные нейроны лежат в пределах ЦНС (т.е. тела и отростки этих нейронов не выходят за пределы мозга).

Скопление нейронов в центральной нервной системе называется ядром (ядра головного, спинного мозга).

Спинной и головной мозг связаны со всеми органами нервами .

Нервы - покрытые оболочкой структуры, состоящие из пучков нервных волокон, образованных в основном аксонами нейронов и клетками нейроглии.

Нервы обеспечивают связь центральной нервной системы с органами, сосудами и кожным покровом.

Нейроны головного мозга. История открытия нейрона. Строение нейрона. Рождение нейрона, миграция, его функции и механизм действия. Отчего гибнут нейроны.

Нейроны головного мозга – термин на слуху у каждого кому близка тема ДЦП, но далеко не каждый знает, что собой представляет нейрон, как устроен и как работает.

Нейрон, или неврон в переводе с греческого – волокно, нерв.

Нейроны - это узкоспециализированные клетки из которых состоит нервная система. Задача нейронов – обмен информацией между телом и мозгом.

Нейроны - электрически возбудимые клетки, которые обрабатывают, хранят и передают информацию с помощью электрических и химических сигналов.

Нейроны головного мозга – история открытия

До недавнего времени большинство нейробиологов считали, что мы рождаемся с определенным набором нейронов и это окончательная цифра. В дальнейшем нейроны могут только гибнуть, но не могут восстанавливаться. Видимо отсюда и произошло высказывание, что «нервные клетки не восстанавливаются».

Используя набор нейронов, данных при рождении, ребенок по мере взросления выстраивает их в цепочки, соответствующие определенным навыкам и опыту. Таким образом эти цепочки являются информационными магистралями между мозгом и различными участками тела. Ученые полагали, что после того как нейроны головного мозга создали цепь, добавление в неё новых нейронов невозможно т.к. это нарушит информационный поток и отключит коммуникативную систему мозга.

В 1962 году представление о нейронах претерпело значительное изменение. Нейробиологу Джозефу Альтману удалось доказать факт рождения новых нейронов в мозге взрослой крысы. А в последующие годы были приведены доказательства миграции новых нейронов от места своего рождения в другие области мозга.

В 1983 году процесс рождения новых нейронов удалось зафиксировать и в мозге взрослой обезьяны.

Это открытие было настолько удивительным и невероятным, а мнение о нейронах мозга настолько устоявшимся, что что многие ученые отказывались верить, в возможность подобных процессов в мозге человека.

Однако последние десятилетия доказали рождение нейронов и в мозге взрослого человека.

Для некоторых нейробиологов и по сей день нейрозенез во взрослом мозге является недоказанной теорией. Но большинство считают, что открытие нейрогенеза открывает невероятные возможности в области неврологии человека.

Строение нейрона

Основными составляющими нейрона являются:

  • тело клетки с ядром
  • расширения клетки – аксон и дентрит
  • терминаль (концевая ветвь аксона)
  • глии (глиальные клетки)

Центральная нервная система (включая головной и спинной мозг) состоит из двух основных типов клеток – нейроны и глии. Глии количественно превосходят нейроны, но нейрон остается главной клеткой нервной системы.

Нейроны используют электрические импульсы и химические сигналы для передачи информации между различными областями мозга, а также между мозгом и остальной частью нервной системы.

Все, что мы думаем, чувствуем и делаем, было бы невозможно без работы нейронов и их опорных клеток, глиальных клеток.

Нейроны имеют три основные части: тело клетки и два расширения, называемые аксоном и дендритом. Внутри тела клетки находится ядро, которое контролирует активность клетки и содержит генетический материал клетки.

Аксон выглядит как длинный хвост, его задача передавать сообщения. Дендриты выглядят как ветви дерева и выполняют функции получения сообщений. Нейроны общаются друг с другом через крошечное пространство, называемое синапсом, между аксонами и дендритами соседних нейронов.

Существует три класса нейронов:

  1. Сенсорные нейроны- несут информацию из органов чувств (таких как глаза, уши, нос) в мозг.
  2. Моторные (двигательные) нейроны- контролируют добровольную мышечную активность, такую как речь, а также передают сообщения от нервных клеток в мышцы.
  3. Все остальные нейроны называются — интернейронами.

Нейроны являются наиболее разнообразными клетками в организме. Внутри этих трех классов нейронов есть сотни разных типов, каждый из которых обладает определенными способностями к передаче данных.

Общаясь друг с другом нейроны создают уникальные связи, это делает каждого из нас не похожим на другого в том, как мы думаем, чувствуем и действуем.

Зеркальные нейроны

Очень интересны функции зеркальных нейронов. Зеркальные нейроны – это такая разновидность нейронов головного мозга, которые возбуждаются не только при самостоятельном выполнении действия, но и при наблюдении за тем, как это действие выполняют другие.

Таким образом можно сказать, что зеркальные нейроны отвечают за подражание или имитацию.

Изучение принципов работы зеркальных нейронов очень перспективно в решении проблем реабилитации церебрального паралича.

Рождение нейронов

Рождение новых нейронов по-прежнему является вопросом, вокруг которого не умолкают споры. Хотя есть неоспоримые данные, подтверждающие что нейрогенез (рождение нейронов) процесс, не прекращающийся на протяжении всей жизни индивида.

Нейроны рождаются в особых клетках, называемых – . Наука о стволовых клетках является довольно молодой и вопросов в ней пока больше, чем ответов. Но мы знаем, что метод лечения ДЦП при помощи стволовых клеток уже имеет место быть и достаточно успешно используется.

Миграция нейронов

Очень интересный вопрос – ! Рождение нейрона по запросу нервной системы это только половина дела, ведь ему еще нужно добраться туда откуда послан запрос и где его ждут.

Как нейрон понимает куда ему идти и что помогает ему туда добраться? В настоящее время ученые увидели два процесса доставки нейронов от места рождения в другие отделы мозга.

  1. Передвижение по специальным клеткам – радиальным глиям. Эти клетки простирают свои волокна от внутренних слоев мозга к внешним. И нейроны скользят по ним, пока не достигнут места назначения.
  2. Химические сигналы. На поверхности нейронов были обнаружены специальные молекулы – адгезии, которые связываются с подобными молекулами на соседних глиальных клетках или аксонах нерва. И так передавая сигнал друг другу ведут нейрон к его окончательному местоположению.

Не все нейроны успешно преодолевают этот путь. Есть мнение, что две трети нейронов гибнет в пути. А часть из тех, что выжили сбиваются с пути и в последствии внедряются в цепочки на не свои места.

Некоторые ученые подозревают, что такие ошибки приводят к шизофрении, дислексии, . Доказательств нет, только предположение.

Гибель нейронов

В норме нейроны – клетки долгожители в организме человека. Но иногда они начинают массово гибнуть в тех или иных структурах мозга, приводя к различным заболеваниям нервной системы. Иногда причины их гибели удается установить, иногда нет, вопрос остается открытым.

Так, например, известно, что при болезни Паркинсона гибнут нейроны, которые продуцируют дофамин, в области мозга, которая контролирует движения тела. Это приводит к трудностям при инициировании движения. Что является спусковым механизмом этого процесса — нет ответа.

При болезни Альцгеймера враждебные белки накапливаются в нейронах и вокруг нейронов в неокортексе и гиппокампе (части мозга), которые контролируют память. Когда эти нейроны умирают, люди теряют способность запоминать и способность выполнять повседневные задачи.

Гипоксия мозга – приводит к кислородному голоданию нейронов и в дальнейшем, если процесс не остановить вовремя, к их гибели.

Физические травмы мозга – приводят к разрыву связей между нейронами. Таким образом нейроны живы, но у них нет возможности взаимодействовать друг с другом.

Искусственный нейрон

Дальнейшее изучение вопросов жизни и гибели нейронов, дает надежду на разработку новых методов лечения нервной системы.

Современные исследования показывают, что нервные клетки в состоянии восстанавливаться. Стволовые клетки могут генерировать все типы нейронов. Возможно стволовыми клетками можно манипулировать и стимулировать в них рождение новых нейронов необходимого типа.

Таким образом процесс восстановления, обновления мозга, замены погибших нейронов нейронами нового поколения – звучит не так уж фантастически.

Возможно термин – искусственные нейроны головного мозга, это наше не такое уж далекое будущее.

Чрезвычайно многообразны, но основные части неизменны у всех типов нейронов. Нейрон состоит из следующих частей: сомы (тела) и многочисленных разветвленных отростков. У каждого нейрона есть два типа отростков: аксон, по которому возбуждение передается от нейрона к другому нейрону, и многочисленные дендриты (от греч. дерево), на которых заканчиваются (от греч. контакт) аксоны от других нейронов. Нейрон проводит возбуждение только от дендрита к аксону.

Основным свойством нейрона является способность возбуждаться (генерировать электрический импульс) и передавать (проводить) это возбуждение к другим нейронам, мышечным, железистым и другим клеткам.

На рис. 2.3 показана схема нейрона, на которой легко прослеживаются его основные части.

Нейроны разных отделов мозга выполняют очень разнообразную работу, и в соответствии с этим форма нейронов из разных частей головного мозга также многообразна (рис. 2.4). Нейроны, расположенные на выходе нейронной сети какой‑то структуры, имеют длинный аксон, по которому возбуждение покидает данную мозговую структуру. Например, нейроны двигательной коры головного мозга, так называемые пирамиды Беца (названные в честь киевского анатома Б. Беца, впервые их описавшего в середине XIX века), имеют у человека аксон около 1 м, он соединяет двигательную кору больших полушарий с сегментами спинного мозга. По этому аксону передаются «двигательные команды», например «пошевелить пальцами ноги». Как возбуждается нейрон? Основная роль в этом процессе принадлежит мембране, которая отделяет цитоплазму клетки от окружающей среды. Мембрана нейрона, как и любой другой клетки, устроена очень сложно. В своей основе все известные биологические мембраны имеют однообразное строение (рис. 2.5): слой молекул белка, затем слой молекул липидов и еще один слой молекул белка. Вся эта конструкция напоминает два бутерброда, сложенных маслом друг к другу. Толщина такой мембраны составляет 7-11 нм. Чтобы представить эти размеры, вообразите, что толщина вашего волоса уменьшилась в 10 тыс. раз. В такую мембрану встроены разнообразные частицы. Одни из них являются частицами белка и пронизывают мембрану насквозь (интегральные белки), они образуют места прохождения для ряда ионов: натрия, калия, кальция, хлора. Это так называемые ионные каналы. Другие частицы прикреплены на внешней поверхности мембраны и состоят не только из молекул белка, но и из полисахаридов. Это рецепторы для молекул биологически активных веществ, например медиаторов, гормонов и др. Часто в состав рецептора, кроме места для связывания специфической молекулы, входит и ионный канал.

Главную роль в возбуждении нейрона играют ионные каналы мембраны. Эти каналы бывают двух видов: одни работают постоянно и откачивают из нейрона ионы натрия и накачивают в цитоплазму ионы калия. Благодаря работе этих каналов (их называют еще насосными каналами или ионным насосом ), постоянно потребляющих энергию, в клетке создается разность концентраций ионов: внутри клетки концентрация ионов калия примерно в 30 раз превышает их концентрацию вне клетки, тогда как концентрация ионов натрия в клетке очень небольшая - примерно в 50 раз меньше, чем снаружи клетки. Свойство мембраны постоянно поддерживать разность ионных концентраций между цитоплазмой и окружающей средой характерно не только для нервной, но и для любой клетки организма. В результате между цитоплазмой и внешней средой на мембране клетки возникает потенциал: цитоплазма клетки заряжается отрицательно на величину около 70 мВ относительно внешней среды клетки. Измерить этот потенциал можно в лаборатории стеклянным электродом, если в клетку ввести очень тонкую (меньше 1 мкм) стеклянную трубочку, заполненную раствором соли. Стекло в таком электроде играет роль хорошего изолятора, а раствор соли - проводника. Электрод соединяют с усилителем электрических сигналов и на экране осциллографа регистрируют этот потенциал. Оказывается, потенциал порядка -70 мВ сохраняется в отсутствие ионов натрия, но зависит от концентрации ионов калия. Другими словами, в создании этого потенциала участвуют только ионы калия, в связи, с чем этот потенциал получил название «калиевый потенциал покоя», или просто «потенциал покоя». Таким образом, это потенциал любой покоящейся клетки нашего организма, в том числе и нейрона.

Нейро́н , или невро́н (от др.-греч. νεῦρον - волокно, нерв) - узко специализированная клетка , структурно-функциональная единица нервной системы . Нейрон - электрически возбудимая клетка, которая предназначена для приема извне, обработки, хранения, передачи и вывода вовне информации с помощью электрических и химических сигналов.

Энциклопедичный YouTube

    1 / 5

    ✪ Межнейронные химические синапсы

    ✪ Нейроны

    ✪ Тайна мозга. Вторая часть. Реальность во власти нейронов.

    ✪ Как Спорт Стимулирует Рост Нейронов в Мозге?

    ✪ Строение нейрона

    Субтитры

    Теперь мы знаем, как передается нервный импульс. Пусть все начнется с возбуждения дендритов, например этого выроста тела нейрона. Возбуждение означает открытие ионных каналов мембраны. По каналам ионы входят в клетку или же поступают из клетки наружу. Это может приводить к торможению, но в нашем случае ионы действуют электротонически. Они изменяют электрический потенциал на мембране, и этого изменения в районе аксонного холмика может хватить для открытия натриевых ионных каналов. Ионы натрия поступают внутрь клетки, заряд становится положительным. Из-за этого открываются калиевые каналы, но этот положительный заряд активирует следующий натриевый насос. Ионы натрия вновь поступают в клетку, таким образом сигнал передается дальше. Вопрос в том, что происходит в месте соединения нейронов? Мы условились, что все началось с возбуждения дендритов. Как правило, источник возбуждения – другой нейрон. Этот аксон также передаст возбуждение какой-либо другой клетке. Это может быть клетка мышцы или еще одна нервная клетка. Каким образом? Вот терминаль аксона. А здесь может быть дендрит другого нейрона. Это другой нейрон с собственным аксоном. Его дендрит возбуждается. Как это происходит? Как импульс с аксона одного нейрона переходит на дендрит другого? Возможна передача с аксона на аксон, с дендрита на дендрит или с аксона на тело клетки, но чаще всего импульс передается с аксона на дендриты нейрона. Давайте рассмотрим поближе. Нас интересует, что происходит в той части рисунка, которую я обведу в рамку. В рамку попадают терминаль аксона и дендрит следующего нейрона. Итак, вот терминаль аксона. Она выглядит как-то так под увеличением. Это терминаль аксона. Вот ее внутреннее содержимое, а рядом дендрит соседнего нейрона. Так выглядит под увеличением дендрит соседнего нейрона. Вот что внутри первого нейрона. По мембране движется потенциал действия. Наконец где-нибудь на мембране терминали аксона внутриклеточный потенциал становится достаточно положительным, чтобы открыть натриевый канал. До прихода потенциала действия он закрыт. Вот этот канал. Он впускает ионы натрия в клетку. С этого все и начинается. Ионы калия покидают клетку, но, пока сохраняется положительный заряд, он может открывать другие каналы, причем не только натриевые. На конце аксона есть кальциевые каналы. Нарисую розовым. Вот кальциевый канал. Обычно он закрыт и не пропускает двухвалентные ионы кальция. Это потенциалзависимый канал. Как и натриевые каналы, он открывается, когда внутриклеточный потенциал становится достаточно положительным, при этом он впускает в клетку ионы кальция. Двухвалентные ионы кальция поступают в клетку. И этот момент вызывает удивление. Это катионы. Внутри клетки положительный заряд из-за ионов натрия. Как туда попадет кальций? Концентрация кальция создается с помощью ионного насоса. Я уже рассказывал про натрий-калиевый насос, аналогичный насос есть и для ионов кальция. Это белковые молекулы, встроенные в мембрану. Мембрана фосфолипидная. Она состоит из двух слоев фосфолипидов. Вот так. Так больше похоже на настоящую клеточную мембрану. Здесь мембрана тоже двуслойная. Это и так понятно, но уточню на всякий случай. Здесь тоже есть кальциевые насосы, функционирующие аналогично натрий-калиевым насосам. Насос получает молекулу АТФ и ион кальция, отщепляет фосфатную группу от АТФ и изменяет свою конформацию, выталкивая кальций наружу. Насос устроен так, что выкачивает кальций из клетки наружу. Он потребляет энергию АТФ и обеспечивает высокую концентрацию ионов кальция снаружи клетки. В состоянии покоя концентрация кальция снаружи гораздо выше. При поступлении потенциала действия открываются кальциевые каналы, и ионы кальция снаружи поступают внутрь терминали аксона. Там ионы кальция связываются с белками. И теперь давайте разберемся, что вообще происходит в этом месте. Я уже упоминал слово «синапс». Место контакта аксона с дендритом и есть синапс. И есть синапс. Его можно считать местом подключения нейронов друг к другу. Этот нейрон называется пресинаптическим. Запишу. Надо знать термины. Пресинаптический. А это – постсинаптический. Постсинаптический. А пространство между этими аксоном и дендритом называется синаптической щелью. Синаптической щелью. Это очень-очень узкая щель. Сейчас мы говорим о химических синапсах. Обычно, когда говорят о синапсах, имеют в виду химические. Еще есть электрические, но о них пока не будем. Рассматриваем обычный химический синапс. В химическом синапсе это расстояние составляет всего 20 нанометров. Клетка, в среднем, имеет ширину от 10 до 100 микрон. Микрон – это 10 в минус шестой степени метров. Здесь 20 на 10 в минус девятой степени. Это очень узкая щель, если сравнивать ее размер с размером клетки. Внутри терминали аксона пресинаптического нейрона есть пузырьки. Эти пузырьки связаны с мембраной клетки с внутренней стороны. Вот эти пузырьки. У них своя двуслойная липидная мембрана. Пузырьки представляют собой емкости. Их много в этой части клетки. В них находятся молекулы, называемые нейротрансмиттерами. Покажу их зеленым цветом. Нейротрансмиттеры внутри пузырьков. Думаю, это слово вам знакомо. Множество лекарств против депрессии и других проблем с психикой, действуют именно на нейротрансмиттеры. Нейротрансмиттеры Нейротрансмиттеры внутри пузырьков. Когда открываются потенциалзависимые кальциевые каналы, ионы кальция поступают в клетку и связываются с белками, удерживающими пузырьки. Пузырьки удерживаются на пресинаптической мембране, то есть этой части мембраны. Их удерживают белки группы SNARE, Белки этого семейства отвечают за слияние мембран. Вот что это за белки. Ионы кальция связываются с этими белками и изменяют их конформацию так, что они подтягивают пузырьки настолько близко к мембране клетки, что мембраны пузырьков с ней сливаются. Давайте рассмотрим этот процесс подробнее. После того как кальций связался с белками семейства SNARE на мембране клетки, они подтягивают пузырьки ближе к пресинаптической мембране. Вот пузырек. Вот так идет пресинаптическая мембрана. Между собой их соединяют белки семейства SNARE, которые притянули пузырек к мембране и располагаются здесь. Результатом стало слияние мембран. Это приводит к тому, что нейротрансмиттеры из пузырьков попадают в синаптическую щель. Так происходит выброс нейротрансмиттеров в синаптическую щель. Этот процесс называется экзоцитозом. Нейротрансмиттеры покидают цитоплазму пресинаптического нейрона. Вы, наверняка, слышали их названия: серотонин, дофамин, адреналин, который сразу и гормон, и нейротрансмиттер. Норадреналин тоже и гормон, и нейротрансмиттер. Все они вам, наверняка, знакомы. Они выходят в синаптическую щель и связываются с поверхностными структурами мембраны Постсинаптического нейрона. Постсинаптического нейрона. Допустим, они связываются здесь, здесь и здесь с особыми белками на поверхности мембраны, вследствие чего активируются ионные каналы. В этом дендрите возникает возбуждение. Допустим, связывание нейротрансмиттеров с мембраной приводит к открытию натриевых каналов. Натриевые каналы мембраны открываются. Они являются трансмиттер-зависимыми. Вследствие открытия натриевых каналов в клетку поступают ионы натрия, и всё повторяется вновь. В клетке появляется избыток положительных ионов, этот электротонический потенциал распространяется в область аксонного холмика, затем к следующему нейрону, стимулируя его. Так это и происходит. Можно и иначе. Допустим, вместо открытия натриевых каналов, будут открываться калиевые ионные каналы. В таком случае ионы калия будут по градиенту концентрации выходить наружу. Ионы калия покидают цитоплазму. Я покажу их треугольниками. Из-за потери положительно заряженных ионов внутриклеточный положительный потенциал уменьшается, вследствие чего генерация потенциала действия в клетке затрудняется. Надеюсь, это понятно. Мы начали с возбуждения. Генерируется потенциал действия, поступает кальций, содержимое пузырьков поступает в синаптическую щель, открываются натриевые каналы, и нейрон стимулируется. А если открыть калиевые каналы, нейрон будет затормаживаться. Синапсов очень и очень, и очень много. Их триллионы. Считается, что одна только кора мозга содержит от 100 до 500 триллионов синапсов. И это только кора! Каждый нейрон способен образовывать множество синапсов. На этом рисунке синапсы могут быть здесь, здесь и здесь. Сотни и тысячи синапсов на каждой нервной клетке. С одним нейроном, другим, третьим, четвертым. Огромное количество соединений... огромное. Теперь вы видите, как сложно устроено все, что имеет отношение к разуму человека. Надеюсь, это вам пригодится. Subtitles by the Amara.org community

Строение нейронов

Тело клетки

Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), ограниченной снаружи мембраной из липидного бислоя . Липиды состоят из гидрофильных головок и гидрофобных хвостов. Липиды располагаются гидрофобными хвостами друг к другу, образуя гидрофобный слой. Этот слой пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: в форме глобул на поверхности, на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в которых находятся ионные каналы.

Нейрон состоит из тела диаметром от 3 до 130 мкм. Тело содержит ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами , аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый цитоскелет, который проникает в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). Цитоскелет нейрона состоит из фибрилл разного диаметра: Микротрубочки (Д = 20-30 нм) - состоят из белка тубулина и тянутся от нейрона по аксону, вплоть до нервных окончаний. Нейрофиламенты (Д = 10 нм) - вместе с микротрубочками обеспечивают внутриклеточный транспорт веществ. Микрофиламенты (Д = 5 нм) - состоят из белков актина и миозина, особенно выражены в растущих нервных отростках и в нейроглии .(Нейроглия , или просто глия (от др.-греч. νεῦρον - волокно, нерв + γλία - клей), - совокупность вспомогательных клеток нервной ткани. Составляет около 40 % объёма ЦНС. Количество глиальных клеток в мозге примерно равно количеству нейронов).

В теле нейрона выявляется развитый синтетический аппарат, гранулярная эндоплазматическая сеть нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Нейроны различаются по форме, числу отростков и функциям. В зависимости от функции выделяют чувствительные, эффекторные (двигательные, секреторные) и вставочные. Чувствительные нейроны воспринимают раздражения, преобразуют их в нервные импульсы и передают в мозг. Эффекторные (от лат. effectus - действие) - вырабатывают и посылают команды к рабочим органам. Вставочные - осуществляют связь между чувствительными и двигательными нейронами, участвуют в обработке информации и выработке команд.

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Дендриты и аксон

Механизм создания и проведения потенциала действия

В 1937 году Джон Захари Младший определил что гигантский аксон кальмара может быть использован для изучения электрических свойств аксонов. Аксоны кальмара были выбраны из-за того что они намного крупнее человеческих. Если вставить внутрь аксона электрод то можно замерить его мембранный потенциал .

Мембрана аксона содержит в себе потенциал-зависимые ионные каналы . Они позволяют аксону генерировать и проводить по своему телу электрические сигналы называемые потенциалами действия. Эти сигналы образуются и распространяются благодаря электрически заряженным ионам натрия (Na +), калия (K +), хлора (Cl -), кальция (Ca 2+).

Давление, растяжение, химические факторы или изменение мембранного потенциала могут активировать нейрон. Происходит это вследствие открытия ионных каналов которые позволяют ионам пересекать мембрану клетки и соответственно изменять мембранный потенциал.

Тонкие аксоны расходуют меньше энергии и метаболических веществ для проведения потенциала действия, но толстые аксоны позволяют проводить его быстрее.

Для того чтобы проводить потенциалы действия более быстро и менее энергозатратно нейроны могут использовать для покрытия аксонов специальные глиальные клетки называемые олигодендроцитами в ЦНС или шванновскими клетками в переферической нервной системе. Эти клетки покрывают аксоны не полностью, оставляя промежутки на аксонах открытые внеклеточному веществу. В этих промежутках повышенная плотность ионных каналов. Они называются перехватами Ранвье . Через них и проходит потенциал действия посредством электрического поля между промежутками.

Классификация

Структурная классификация

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Безаксонные нейроны - небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях , не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны - нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге . Многие морфологи считают, что униполярные нейроны в теле человека и высших позвоночных не встречаются.

Мультиполярные нейроны - нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе .

Псевдоуниполярные нейроны - являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация

Афферентные нейроны (чувствительный, сенсорный, рецепторный или центростремительный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный, моторный или центробежный). К нейронам данного типа относятся конечные нейроны - ультиматные и предпоследние - не ультиматные.

Ассоциативные нейроны (вставочные или интернейроны) - группа нейронов осуществляет связь между эфферентными и афферентными.

  • униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;
  • псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;
  • биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
  • мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Развитие и рост нейрона

Вопрос о делении нейронов в настоящее время остаётся дискуссионным. По одной из версий нейрон развивается из небольшой клетки-предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. Первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение, которое прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении - некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.

Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии , микротрубочки и нейрофиламенты, аналогичные имеющимся в теле нейрона.

Микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется у окончания. Конус роста - это область быстрого экзоцитоза и эндоцитоза , о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.

Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

Свойства и функции нейронов

Свойства:

  • Наличие трансмембранной разницы потенциалов (до 90 мВ), наружная поверхность электроположительна по отношению к внутренней поверхности.
  • Очень высокая чувствительность к некоторым химическим веществам и электрическому току.
  • Способность к нейросекреции , то есть к синтезу и выделению особых веществ (нейромедиаторов), в окружающую среду или синаптическую щель.
  • Высокое энергопотребление , высокий уровень энергетических процессов, что обуславливает необходимость постоянного притока основных источников энергии - глюкозы и кислорода , необходимых для окисления.

Функции:

  • Приёмная функция. Синапсы - точки контакта, от рецепторов и нейронов получаем информацию в виде импульса.
  • Интегративная функция. В результате обработки информации, на выходе нейрона формируется сигнал, несущий информацию всех суммированных сигналов.
  • Проводниковая функция. От нейрона по аксону идет информация в виде электрического тока к синапсу.
  • Передающая функция. Нервный импульс, достигнув окончание аксона , который уже входит в структуру синапса, обуславливает выделение медиатора - непосредственного передатчика возбуждения к другому нейрону или исполнительному органу.