Пути проведения боли и её механизмы. Болевые рецепторы. Ноцицептивная чувствительность и её физиологическая роль. Проекционные и отражённые боли Боль. Болевая чувствительность. Ноцицепторы. Пути болевой чувствительности. Оценка боли. Ворота боли. Опиатные

Боль является симптомом многих заболеваний и повреждений организма. У человека сформировался сложный механизм восприятия боли, который сигнализирует о повреждениях и заставляет принимать меры к устранению причин боли (одёрнуть руку и др.).

Ноцицептивная система

За восприятие и проведение боли в организме отвечает так называемая ноцицептивная система . В упрощённом виде механизм проведения боли можно представить следующим образом (рисунок ⭣).

При раздражении болевых рецепторов (ноцицепторов), локализованных в различных органах и тканях (кожа, сосуды, скелетные мышцы , надкостница и др.), возникает поток болевых импульсов, которые по афферентным волокнам поступают в задние рога спинного мозга.

Афферентные волокна бывают двух типов: А-дельта волокна и С-волокна.

А-дельта волокна являются миелинизированными, а значит, быстропроводящими - скорость проведения импульсов по ним составляет 6-30 м/с. А-дельта волокна отвечают за передачу острой боли. Они возбуждаются высокоинтенсивными механическими (булавочный укол) и иногда термическими раздражениями кожи. Имеют скорее информационное значение для организма (заставляют отдёрнуть руку, отпрыгнуть и др.).

Анатомически А-дельта ноцицепторы представлены свободными нервными окончаниями, разветвлёнными в виде дерева. Они располагаются преимущественно в коже и в обоих концах пищеварительного тракта. Имеются они также и в суставах. Трансмиттер (передатчик нервного сигнала) А-дельта волокон остаётся неизвестным.

С-волокна - немиелинизированные; они проводят мощные, но медленные потоки импульсации со скоростью 0,5-2 м/с. Считается, что эти афферентные волокна предназначены для восприятия вторичной острой и хронической боли.

С-волокна представлены плотными некапсулированными гломерулярными тельцами. Они являются полимодальными ноцицепторами, поэтому реагируют как на механические, так на температурные и химические раздражения. Активируются они химическими веществами, возникающими при повреждении тканей, являясь одновременно хеморецепторами, считаются оптимальными тканеповреждающими рецепторами.

С-волокна распределяются по всем тканям за исключением центральной нервной системы. Волокна, имеющие рецепторы, воспринимающие повреждения тканей, содержат субстанцию Р, выступающую в качестве трансмиттера.

В задних рогах спинного мозга происходит переключение сигнала с афферентного волокна на вставочный нейрон, с которого, в свою очередь, импульс ответвляется, возбуждая мотонейроны. Данное ответвление сопровождается двигательной реакцией на боль - отдёрнуть руку, отпрыгнуть и т.д. Со вставочного нейрона поток импульсов, поднимаясь далее по ЦНС, проходит через продолговатый мозг, в котором находится несколько жизненно важных центров: дыхательный, сосудодвигательный, центры блуждающего нерва, центр кашля, рвотный центр. Именно поэтому боль в некоторых случаях имеет вегетативное сопровождение - сердцебиение, потоотделение, скачки артериального давления, слюнотечение и т.д.

Далее болевой импульс достигает таламуса. Таламус является одним из ключевых звеньев передачи болевого сигнала. В нём находятся так называемые переключающие (ПЯТ) и ассоциативные ядра таламуса (АЯТ). Эти образования имеют определённый, достаточно высокий порог возбуждения, который могут преодолеть далеко не все болевые импульсы. Наличие такого порога имеет очень важное значение в механизме восприятия боли, без него любое малейшее раздражение вызывало бы болевое ощущение.

Тем не менее, если импульс достаточно сильный, он вызывает деполяризацию клеток ПЯТ, импульсы от них поступают в двигательные зоны коры головного мозга, определяя само ощущение боли. Такой путь проведения болевых импульсов называет специфическим. Он обеспечивает сигнальную функцию боли - организм воспринимает факт возникновения боли.

В свою очередь, активация АЯТ обусловливает попадание импульсов в лимбическую систему и гипоталамус, обеспечивая эмоциональную окраску боли (неспецифический путь проведения боли). Именно из-за этого пути проведения восприятие боли имеет психоэмоциальную окраску. Кроме того, благодаря этому пути люди могут описывать воспринимаемую боль: острая, пульсирующая, колющая, ноющая и т.д., что определяется уровнем воображения и типом нервной системы человека.

Антиноцицептивная система

На всем протяжении ноцицепгивной системы присутствуют элементы антиноцицептивной системы, которая также является неотъемлемой частью механизма восприятия боли. Элементы этой системы призваны подавлять болевые ощущения. В механизмах развития анальгезии, подконтрольным антиноцицептивной системе, участвуют серотонинэргическая, ГАМК-эргическая и, в наибольшей степени, - опиоидная система. Функционирование последней реализуется за счёт белковых трансмиттеров - энкефалинов, эндорфинов - и специфических для них опиоидных рецепторов.

Энкефапины (мет-энкефалин - H-Tyr-Gly-Gly-Phe-Met-OH, лей-энкефалин - H-Tyr-Gly-Gly-Phe-Leu-OH и др.) впервые были выделены в 1975 г. из мозга млекопитающих. По своей химической структуре относятся к классу пентапептидов, имея очень близкое строение и молекулярную массу. Энкефалины являются нейромедиаторами опиоидной системы, функционируют на всем ее протяжении от ноцицепторов и афферентных волокон до структур головного мозга.

Эндорфины (β-эндофин и динорфин) - гормоны, продуцируемые кортикотропными клетками средней доли гипофиза. Эндорфины имеют более сложное строение и большую молекулярную массу, чем энкефалины. Так, β-эндофин синтезируется из β-липотропина, являясь, по сути, 61-91 аминокислотной частью этого гормона.

Энкефалины и эндорфины, стимулируя опиоидные рецепторы, осуществляют физиологическую антиноцицепцию, причём энкефалины следует рассматривать как нейромедиаторы, а эндорфины - как гормоны.

Опиоидные рецепторы - класс рецепторов, которые, являясь мишенями для эндорфинов и энкефалинов, участвуют в реализации эффектов антиноцицептивной системы. Их название произошло от опия - высушенного млечного сока мака снотворного, известного с древних времен источника наркотических анальгетиков.

Выделяют 3 основных типа опиоидных рецепторов: μ (мю), δ (дельта), κ (каппа). Их локализация и эффекты, возникающие при их возбуждении, представлены в таблице ⭣.

Локализация Эффект при возбуждении
μ-рецепторы:
Антиноцицептивная система Анальгезия (спинальная, супраспинальная), эйфория, пристрастие.
Кора головного мозга Торможение коры, сонливость. Косвенно - брадикардия, миоз.
Дыхательный центр Угнетение дыхания.
Центр кашля Угнетение кашлевого рефлекса.
Рвотный центр Стимуляция рвотного центра.
Гипоталамус Угнетение центра терморегуляции.
Гипофиз Ослабление выработки гонадотропных гормонов и усиление выработки пролактина и антидиуретического гормона.
Желудочно-кишечный тракт Снижение перистальтики, спазм сфинктеров, ослабление секреции желез.
δ-рецепторы:
Антиноцицептивная система Анальгезия.
Дыхательный центр Угнетение дыхания.
κ-рецепторы:
Антиноцицептивная система Анальгезия, дисфория.

Энкефалины и эндорфины, стимулируя опиоидные рецепторы, вызывают активацию связанного с этими рецепторами G₁-белка. Данный белок ингибирует фермент аденилатциклазу, которая в обычных условиях способствует синтезу циклического аденозинмонофосфата (цАМФ). На фоне её блокады количество цАМФ внутри клетки снижается, что приводит к активации мембранных калиевых каналов и блокаде кальциевых каналов.

Как известно, калий - это внутриклеточный ион, кальций - внеклеточный ион. Указанные изменения в работе ионных каналов обусловливают выход ионов калия из клетки, притом что кальций внутрь клетки войти не может. В результате заряд мембраны резко снижается, и развивается гиперполяризация - состояние, при котором клетка не воспринимает и не передаёт возбуждение. Как следствие возникает подавление ноцицептивной импульсации.

Источники:
1. Лекции по фармакологии для высшего медицинского и фармацевтического образования / В.М. Брюханов, Я.Ф. Зверев, В.В. Лампатов, А.Ю. Жариков, О.С. Талалаева - Барнаул: изд-во Спектр, 2014.
2. Общая патология человека / Саркисов Д.С., Пальцев М.А., Хитров Н.К. - М.: Медицина, 1997.

Соматическаяивисцеральнаячувствительность

Сенсорные ощущения подразделяются на 3 физиологических класса: механорецептивные , температурные и болевые . Механорецептивные ощущения включают тактильные (прикосновение, давление, вибрация) и проприоцептивные (постуральные) - ощущение позы, статического положения и положения при движении.
По месту возникновения ощущений чувствительность классифицируется, как экстероцептивная (ощущения, возникающие с поверхности тела), висцеральная (ощущения, возникающие во внутренних органах) и глубокая (ощущения поступают от глубоколежащих тканей - фасций, мышц, костей).
· Соматические сенсорные сигналы передаются с большой скоростью, высокой точностью локализации и определения минимальных градаций интенсивности или изменений силы сенсорного сигнала.
· Висцеральные сигналы характеризуются более низкой скоростью проведения, менее развитой системой пространственной локализации восприятия сигнала, менее развитой системой градации силы раздражения и меньшей способностью передавать быстрые изменения сигнала.

Соматосенсорные сигналы

Тактильная чувствительность

Тактильные ощущения прикосновения, давления и вибрации относятся к раздельным видам ощущений, но воспринимаются одними и теми же рецепторами.
· Ощущение прикосновения - результат стимуляции чувствительных нервных окончаний кожи и подлежащих тканей.
· Ощущение давления возникает в результате деформации глубоких тканей.
· Вибрационное ощущение возникает в результате быстрых повторных сенсорных стимулов, наносимых на те же рецепторы, что и рецепторы, воспринимающие прикосновение и давление.

Тактильные рецепторы

Проприоцептивное чувство

Материал этого раздела см. в книге.

Пути передачи соматосенсорных сигналов

Практически вся сенсорная информация от сегментов тела (см. рис. 9–8) поступает в спинной мозг через проходящие в составе задних корешков центральные отростки чувствительных нейронов спинномозговых узлов (рис. 9–2, 9–3). Войдя в спинной мозг, центральные отростки чувствительных нейронов либо прямо направляются к продолговатому мозгу (лемнисковая система: тонкий, или нежный пучок Голля и клиновидный пучок Бурдаха), либо заканчиваются на вставочных нейронах, аксоны которых идут к таламусу в составе вентрального, или переднего и латерального, или бокового спиноталамических восходящих путей.

Рис . 9 – 2 . Спинной мозг . Вид со спинной стороны. Пояснения в тексте. Карты ядер, пластинок и путей спинного мозга см. в разделе «Ядра и проводящие пути спинного мозга» главы 13.

· Тонкий и клиновидный пучки - проводящие пути проприоцептивной и тактильной чувствительности - проходят в составе заднего канатика той же стороны спинного мозга и заканчиваются в тонком и клиновидном ядрах продолговатого мозга. Аксоны нейронов этих ядер по медиальной петле (отсюда и название - лемнисковая система) переходят на противоположную сторону и направляются к таламусу.

· Спиноталамический путь вентральный - проекционный афферентный путь, проходящий в переднем канатике противоположной стороны. Периферические отростки первых нейронов, расположенных в спинномозговых узлах, проводят тактильные и прессорные ощущения от механорецепторов кожи . Центральные отростки этих нейронов вступают через задние корешки в задние канатики, где поднимаются на 2–15 сегментов и образуют синапсы с вставочными нейронами задних рогов. Аксоны этих нейронов переходят на противоположную сторону и проходят далее в передней периферической зоне переднебоковых канатиков. Отсюда волокна пути восходят к заднелатеральному вентральному ядру таламуса вместе с латеральным спиноталамическим путём.

· Спиноталамический путь латеральный - проекционный афферентный путь, проходящий в боковом канатике. Периферическими рецепторами являются свободные нервные окончания кожи. Центральные отростки псевдоуниполярных нейронов спинномозговых узлов входят в противоположную часть спинного мозга через латеральные отделы задних корешков и, поднявшись в спинном мозге на 1–2 сегмента, образуют синапсы с нейронами роландова студенистого вещества. Аксоны этих нейронов фактически образуют латеральный спиноталамический путь. Они идут на противоположную сторону и поднимаются в латеральных отделах боковых канатиков. Спиноталамические пути проходят через ствол мозга и заканчиваются в вентро-латеральных ядрах таламуса. Это главный путь проведения болевой и температурной чувствительности .

Рис . 9 – 3 . Восходящие пути чувствительности . А . Путь от чувствительных нейронов спинномозговых узлов (первый, или первичный чувствительный нейрон) через вторые нейроны (вставочные нейроны спинного мозга или нервные клетки клиновидного и тонкого ядра продолговатого мозга) к третьим нейронам пути - таламическим. Аксоны этих нейронов направляются к коре головного мозга. Б . Расположение нейронов, передающих разные модальности, в пластинах (римские цифры) спинного мозга.

Задний канатик состоит из толстых миелиновых нервных волокон, проводящих сигналы со скоростью от 30 до 110 м/с; спиноталамические пути состоят из тонких миелиновых волокон, проводящих ПД со скоростью от нескольких метров до 40 м/с.

Соматосенсорная кора

Материал этого раздела см. в книге.

Обработка сигналов в восходяЩих проекционных путях

Материал этого раздела см. в книге.

Болевая чувствительность

Боль - неприятное сенсорное и эмоциональное ощущение, связанное с истинным или потенциальным повреждением ткани или описываемое в терминах такого повреждения. Боль для организма является защитным сигнальным механизмом и может возникнуть в любой ткани, где появились признаки повреждения. Боль подразделяют на быструю и медленную, острую и хроническую.

· Быстрая боль ощущается через 0,1 сек после нанесения болевого стимула. Быструю боль описывают под многими наименованиями: режущая, колющая, острая, электрическая и др. От болевых рецепторов в спинной мозг болевые сигналы передаются по волокнам небольшого диаметра A d со скоростью от 6 до 30 м/с.
· Медленная боль возникает в течение 1 сек и более, а затем медленно нарастает в течение многих секунд или минут (например, медленная жгучая, тупая, пульсирующая, распирающая, хроническая боль). Боль медленного хронического типа передаётся по С‑волокнам со скоростью от 0,5 до 2 м/с.
Существование двойной системы передачи болевых сигналов приводит к тому, что сильное резкое раздражение часто вызывает двойное болевое ощущение. Быстрая боль передаётся немедленно, а через секунду или чуть позже передаётся медленная боль.

Рецепция боли

Боль вызывают многие факторы: механические, температурные и химические болевые стимулы. Быструю боль порождают преимущественно механические и температурные стимулы, медленную - все виды стимулов. Некоторые вещества известны как химические стимуляторы боли: , ионы калия, молочная кислота, протеолитические ферменты. Простагландины повышают чувствительность болевых окончаний, но сами непосредственно не возбуждают их. Болевыми рецепторами (ноцицепторы ) являются свободные нервные окончания (см. рис. 8–1А). Они широко распространены в поверхностных слоях кожи, надкостнице, суставах, стенке артерий. В других глубоких тканях свободных нервных окончаний меньше, но обширные тканевые повреждения могут вызвать боль практически во всех областях организма. Болевые рецепторы практически не адаптируются.

· Действие химических стимулов , вызывающих боль, проявляется при инъекции экстракта из повреждённой ткани в нормальный участок кожи. В экстракте обнаруживаются все описанные выше химические факторы, вызывающие боль. Наиболее сильную боль вызывает , что позволило считать его основной причиной появления боли при повреждении ткани. Кроме того, интенсивность болевых ощущений коррелирует с локальным увеличением ионов калия и повышением активности протеолитических ферментов. Появление боли в этом случае объясняется прямым влиянием протеолитических ферментов на нервные окончания и повышением мембранной проницаемости для K + , что и является непосредственной причиной появления боли.

· Тканевая ишемия , возникающая при прекращении кровообращения в ткани, через несколько минут вызывает сильные болезненные ощущения. Замечено, что чем выше обмен в ткани, тем быстрее появляется боль при нарушении кровотока. Например, наложение манжетки на верхнюю конечность и накачивание воздуха до полного прекращения кровотока вызывает в работающей мышце появление боли через 15–20 сек. В этих же условиях в неработающей мышце боль возникает несколько минут спустя.

· Молочная кислота . Возможной причиной возникновения боли во время ишемии является накопление больших количеств молочной кислоты, но не менее вероятно, что в ткани образуются другие химические факторы (например, и протеолитические ферменты) и именно последние стимулируют болевые нервные окончания.

· Мышечный спазм приводит к появлению боли, лежащей в основе многих клинических болевых синдромов. Причиной возникновения боли может быть непосредственное воздействие спазма на механочувствительные болевые рецепторы мышц. Вероятнее, что причиной возникновения боли является непрямой эффект спазма мышц, сдавливающего кровеносные сосуды и вызывающего ишемию. Наконец, спазм увеличивает скорость обменных процессов в мышечной ткани, создавая условия для увеличения эффекта действия ишемии и выделения веществ, индуцирующих боль.

· Болевые рецепторы практически не адаптируются . В ряде случаев возбуждение болевых рецепторов не только не уменьшается, но и продолжает прогрессивно нарастать (например, в виде тупой распирающей боли). Повышение чувствительности болевых рецепторов называется гипералгезией . Понижение порога болевой чувствительности обнаруживается при длительной температурной стимуляции. Отсутствие адаптационной способности у ноцицепторов не позволяет субъекту забывать о вредоносном воздействии болевых стимулов на ткани его тела.

Передача болевых сигналов

Быстрой и медленной боли соответствуют собственные нервные пути проведения: путь проведения быстрой боли и путь проведения медленной хронической боли .

Проведение быстрой боли

Проведение быстрой боли (рис. 9–7А) от рецепторов осуществляют волокна типа Ad , вступающие в спинной мозг по задним корешкам и синаптически контактирующими с нейронами заднего рога этой же стороны. После образования синапсов с нейронами второго порядка на этой же стороне нервные волокна переходят на противоположную сторону и поднимаются вверх к мозговому стволу в составе спиноталамического тракта в переднебоковых канатиках. В стволе мозга часть волокон синаптически контактирует с нейронами ретикулярной формации, основная же масса волокон проходит к таламусу, оканчиваясь в вентро-базальном комплексе вместе с волокнами лемнисковой системы, несущими тактильную чувствительность. Небольшая часть волокон оканчивается в задних ядрах таламуса. Из этих таламических областей сигналы передаются в другие базальные структуры мозга и в соматосенсорную кору (рис. 9–7А).

Рис . 9 – 7 . Пути передачи болевой чувствительности (А ) и антиноцицептивная система (Б ).

· Локализация быстрой боли в различных частях тела более чёткая, чем медленной хронической боли.

· Передача болевых импульсов (рис. 9–7Б, 9–8). Глутамат и участвует в передаче болевых стимулов в качестве возбуждающего нейромедиатора в синапсах между центральными отростками чувствительных нейронов спинномозгового узла и перикарионами нейронов спиноталамического пути. Блокирование секреции вещества Р и снятие болевых ощущений реализуются через рецепторы опиоидных пептидов, встроенных в мембрану терминали центрального отростка чувствительного нейрона (пример феномена пресинаптического торможения). Источник опиоидного пептида - вставочный нейрон.

Рис . 9–8 . Путь проведения болевых импульсов (стрелки). Вещество Р передаёт возбуждение с центрального отростка чувствительного нейрона на нейрон спиноталамического тракта. Через опиоидные рецепторы энкефалин из вставочного нейрона тормозит секрецию вещества Р из чувствительного нейрона и проведение болевых сигналов. [ 11 ].

Проведение медленной хронической боли

Центральные отростки чувствительных нейронов оканчиваются на нейронах пластин II и III. Длинные аксоны вторых нейронов переходят на другую сторону спинного мозга и в составе переднебокового канатика поднимаются в головной мозг. Эти волокна, проводящие сигналы медленной хронической боли в составе палеоспиноталамического тракта, имеют обширные синаптические связи в стволе мозга, оканчиваясь в ретикулярных ядрах продолговатого мозга, моста и среднего мозга, в таламусе, в области покрышки и в сером веществе, окружающем сильвиев водопровод. Из мозгового ствола болевые сигналы поступают к внутрипластинчатым и вентролатеральным ядрам таламуса, гипоталамусу и другим структурам основания мозга (рис. 9–7Б).

· Локализация медленной хронической боли . Медленная хроническая боль локализуется не в отдельных точках тела, а в его больших частях, таких как рука, нога, спина и т.д. Это объясняется полисинаптическими, диффузными связями путей, проводящих медленную боль.

· Центральная оценка медленной боли . Полное удаление соматосенсорной коры у животных не нарушает у них способности ощущать боль. Следовательно, болевые импульсы, входящие в мозг через ретикулярную формацию мозгового ствола, таламус и другие нижележащие центры, могут вызывать осознанное восприятие боли. Соматосенсорная кора участвует в оценке качества боли.

· Нейромедиатор медленной боли в окончаниях C‑волокон - . Болевые волокна типа C, входящие в спинной мозг, в своих окончаниях выделяют нейромедиаторы глутамат и вещество P. Глутамат действует в течение нескольких миллисекунд. Вещество P выделяется медленнее, его действующая концентрация достигается в течение секунд и даже минут.

Система подавления боли

Организм человека не только ощущает и определяет силу и качество болевых сигналов, но и способен понижать и даже подавлять активность болевых систем. Диапазон индивидуальной реакции на боль необыкновенно широк, и ответная реакция на боль в немалой степени зависит от способности мозга подавлять поступающие в нервную систему болевые сигналы при помощи антиноцицептивной (аналгезирующая, антиболевая) системы. Антиноцицептивная система (рис. 9–7Б) состоит из трёх основных компонентов.

1 . Комплекс торможения боли , расположенный в задних рогах спинного мозга. Здесь боль блокируется до того, как она достигнет воспринимающих отделов мозга.
2 . Большое ядро шва , расположенное по срединной линии между мостом и продолговатым мозгом; ретикулярное парагигантоклеточное ядро , расположенное в боковом отделе продолговатого мозга. Из этих ядер сигналы поступают по заднебоковым столбам в спинной мозг.
3 . Околоводопроводное серое вещество и перивентрикулярная область среднего мозга и верхнего отдела моста, окружающие сильвиев водопровод и частично третий и четвёртый желудочки. Нейроны из этих аналгезирующих областей посылают сигналы к большому ядру шва и ретикулярному парагигантоклеточному ядру.
Электрическая стимуляция околоводопроводного серого вещества или большого ядра шва почти полностью подавляет болевые сигналы, идущие через задние корешки спинного мозга. В свою очередь, стимуляция вышележащих структур мозга возбуждает перивентрикулярные ядра и переднемозговой медиальный пучок гипоталамуса и тем самым вызывает аналгезирующий эффект.

· Нейромедиаторы антиноцицептивной системы . Медиаторами, выделяющимися в окончаниях нервных волокон обезболивающей системы, являются и. Различные отделы аналгезирующей системы чувствительны к морфину, опиатам и опиоидам (b -эндорфину, энкефалинам, динорфину). В частности, энкефалины и динорфин были найдены в структурах аналгезирующей системы мозгового ствола и спинного мозга.

С нейронами большого ядра шва образуют синапсы нервные волокна, содержащие. Аксоны этих нейронов заканчиваются в задних рогах спинного мозга и выделяют из своих окончаний. Серотонин, в свою очередь, возбуждает энкефалинергические нейроны задних рогов спинного мозга (рис. 9–8). Энкефалин вызывает пресинаптическое торможение и постсинаптическое торможение в области синапсов болевых волокон типов C и A d в задних рогах спинного мозга. Предполагается, что пресинаптическое торможение возникает в результате блокады кальциевых каналов в мембране нервных окончаний.

Центральное торможение и отвлекающее раздражение
· С позиций активации противоболевой системы находит объяснение хорошо известный факт забывания боли раненым во время боя (стресс-аналгезия), и известное многим из личного опыта снижение боли при поглаживании или вибрации повреждённого участка тела.
· Стимуляция электрическим вибратором болевого места также приводит к некоторому облегчению боли. Акупунктура используется более 4000 лет для предотвращения или облегчения боли, а в ряде случаев под иглоукалыванием проводятся большие хирургические операции.
· Торможением болевых сигналов в центральных сенсорных путях можно объяснить и эффективность отвлекающего раздражения, применяемого при стимуляции кожи в области воспаления внутреннего органа. Так, горчичники и перцовые пластыри работают по этому принципу.

Отражённая боль

Раздражение внутренних органов часто вызывает боль, которая ощущается не только во внутренних органах, но и в некоторых соматических структурах, находящихся достаточно далеко от места вызова боли. Такая боль называется отражённой (иррадиирующей).

Наиболее известным примером отражённой боли является сердечная боль, иррадиирующая в левую руку. Однако будущий врач должен знать, что участки отражения боли не являются стереотипными, а необычные области отражения наблюдаются довольно часто. Сердечная боль, например, может быть чисто абдоминальной, она может иррадиировать в правую руку и даже в шею.

Правило дерматомеров . Афферентные волокна от кожи, мышц, суставов и внутренних органов входят в спинной мозг по задним корешкам в определённом пространственном порядке. Кожные афферентные волокна каждого заднего корешка иннервируют ограниченную область кожи, называемую дерматомером (рис. 9–9). Отражённая боль обычно возникает в структурах, развивающихся из одного и того же эмбрионального сегмента, или дерматомера. Этот принцип называется «правилом дерматомера». Например, сердце и левая рука имеют одну и ту же сегментарную природу, а яичко мигрировало со своим нервным снабжением из урогенитального валика, из которого возникли почки и мочеточники. Поэтому не удивительно, что боль, возникшая в мочеточниках или почках, иррадиирует в яичко.

Рис . 9 – 9 . Дерматомеры

Конвергенция и облегчение в механизме возникновения отражённой боли

В развитии отражённой боли принимают участие не только висцеральные и соматические нервы, входящие в нервную систему на одном сегментарном уровне, но и большое количество сенсорных нервных волокон, проходящих в составе спиноталамических путей. Это создаёт условия для конвергенции периферических афферентных волокон на таламических нейронах, т.е. соматические и висцеральные афференты конвергируют на одних и тех же нейронах (рис. 9–10).

· Теория конвергенции . Большая скорость, постоянство и частота информация о соматической боли способствует закреплению мозгом информации о том, что сигналы, поступающие в соответствующие нервные пути, вызваны болевыми стимулами в определённых соматических областях тела. Когда те же нервные пути возбуждаются активностью висцеральных болевых афферентных волокон, то сигнал, достигающий мозга, не дифференцируется, и боль проецируется на соматическую область тела.

· Теория облегчения . Другая теория происхождения отражённой боли (так называемая теория облегчения) основывается на предположении, что импульсация от внутренних органов понижает порог спиноталамических нейронов к воздействиям афферентных болевых сигналов из соматических областей . В условиях облегчения даже минимальная болевая активность из соматической области проходит в мозг.

Рис . 9 – 10 . Отражённая боль

Если конвергенция - единственное объяснение происхождения отражённой боли, то местная анестезия области отражённой боли не должна оказывать никакого влияния на боль. С другой стороны, если подпороговые облегчающие влияния участвуют в возникновении отражённой боли, то боль должна исчезнуть. Действие местной анестезии на область отражённой боли варьирует. Тяжелая боль обычно не проходит, боль умеренная может полностью прекращаться. Следовательно, оба фактора - конвергенция и облегчение - участвуют в возникновении отражённой боли.

Необычная и продолжительная боль

У некоторых людей повреждение и болезнетворный процесс, травмирующий периферические нервы, вызывает тяжёлое, истощающее и ненормально устойчивое болевое ощущение.
· Гипералгезия , при которой стимулы, ведущие обычно к умеренному чувству боли, вызывают тяжелую, длительную боль.
· Каузалгия - стойкое ощущение жжения, развивающееся обычно после сосудистого поражения чувствительных волокон периферического нерва.
· Аллодиния - болевые ощущения, при которых нейтральные стимулы (например, лёгкое дуновение ветра или касание одежды причиняют интенсивную боль).
· Гиперпатия - болевое ощущение, при котором болевой порог повышен, но при его достижении вспыхивает интенсивная, жгучая боль.
· Фантомная боль представляет собой болевое ощущение в отсутствующей конечности.

Причины этих болевых синдромов окончательно не установлены, но известно, что эти виды боли не уменьшаются при местной анестезии или перерезке нерва. Экспериментальные исследования указывают на то, что повреждение нерва приводит к интенсивному разрастанию и ветвлению норадренергических нервных волокон в чувствительных ганглиях, откуда выходят задние корешки по направлению к повреждённой области. По-видимому, симпатические разряды способствуют появлению необычных болевых сигналов. Таким образом, на периферии возникает замкнутый круг. Относящиеся к нему повреждённые нервные волокна стимулируются норадреналином на уровне задних корешков. a -Адренергическая блокада уменьшает болевые каузалгические ощущения.

Таламический синдром . Спонтанная боль может возникать на уровне таламуса. При таламическом синдроме имеется повреждение задних таламических ядер, обычно вызываемое закупоркой ветвей задней мозговой артерии. Пациенты с этим синдромом имеют приступы продолжительных и тяжелых, исключительно неприятных болей, возникающих спонтанно или в ответ на различные сенсорные стимулы.

Боль можно снять применением адекватных доз анальгетиков, но это происходит не во всех случаях. Для смягчения непереносимых болей используется метод хронического раздражения дорсальных корешков имплантированными электродами. Электроды соединены с портативным стимулятором, и пациент может сам себя стимулировать в необходимых случаях. Облегчение от боли достигается, по всей видимости, антидромным проведением импульсов через коллатерали к антиболевой системе задних корешков. Самостимуляция околоводопроводного серого вещества также помогает уменьшить нестерпимые боли, вероятно, за счёт выделения .

Висцеральная боль

В практической медицине боль, возникающая во внутренних органах, является важным симптомом воспаления, инфекционных болезней и других нарушений. Любой стимул, который чрезмерно возбуждает нервные окончания во внутренних органах, вызывает боль. К ним относятся ишемия висцеральной ткани, химическое повреждение поверхности внутренних органов, спазм гладкой мускулатуры полых органов, растяжение полых органов и растяжение связочного аппарата. Все виды висцеральной боли передаются через болевые нервные волокна, проходящие в составе вегетативных нервов, преимущественно симпатических. Болевые волокна представлены тонкими C‑волокнами, проводящими хроническую боль.

Причины висцеральной боли

· Ишемия вызывает боль в результате образования кислых продуктов метаболизма и продуктов распада тканей, а также и протеолитических ферментов, раздражающих болевые нервные окончания.

· Спазм полых органов (таких как участок кишки, мочеточника, жёлчного пузыря, жёлчных протоков и др.) вызывает механическое раздражение болевых рецепторов. Иногда механическое раздражение комбинируется с ишемией, вызванной спазмом. Часто болевые ощущения из спазмированного органа приобретают форму острейшего спазматического приступа, нарастающего до определённой степени, а затем постепенно убывающего.

· Химическое раздражение может возникать в тех случаях, когда повреждающие вещества поступают из ЖКТ в брюшную полость. Попадание желудочного сока в брюшную полость охватывает обширную зону раздражения болевых рецепторов и порождает нестерпимо острую боль.
· Перерастяжение полых органов раздражает механически болевые рецепторы и нарушает кровоток в стенке органа.

Головная боль

Головная боль является разновидностью отражённой боли, воспринимаемой как болевое ощущение, возникающее на поверхности головы. Многие виды болей возникают от болевых стимулов внутри черепа, другие - от раздражителей, расположенных снаружи черепа.

Головные боли внутричерепного происхождения

· Чувствительные к боли области внутри черепа . Сам мозг полностью лишен болевой чувствительности. Даже разрез или электрическая стимуляция сенсорной области коры только случайно могут вызвать боль. Вместо боли в областях, представленных в соматосенсорной зоне коры, возникают ощущения лёгкого покалывания - парестезии. Следовательно, вряд ли большинство головных болей вызвано повреждениями паренхимы мозга.

· Давление на венозные синусы , окружающие мозг, повреждение мозжечкового намёта или растяжение твёрдой мозговой оболочки в области основания мозга могут вызывать интенсивные боли, определяемые как головная боль. Все виды травматизации (раздавливание, растяжение, скручивание сосудов мозговых оболочек) вызывают головную боль. Особенно чувствительны структуры средней мозговой артерии.

· Менингеальные боли - наиболее тяжёлый вид головных болей, возникающих при воспалительных процессах мозговых оболочек и отражающихся по всей поверхности головы.
· Боли при снижении давления в спинномозговой жидкости возникают из–за уменьшения количества жидкости и растягивания весом самого мозга мозговых оболочек.

· Боль при мигрени возникает в результате спастических сосудистых реакций. Считают, что мигрень появляется в результате длительных эмоций или напряжения, вызывающих спазм некоторых артериальных сосудов головы, включающих и сосуды, снабжающие мозг. В результате ишемии, вызванной спазмом, наступает потеря тонуса сосудистой стенки длительностью от 24 до 48 час. Пульсовые колебания АД более интенсивно растягивают расслабленные атоничные сосудистые стенки артерий, и это перерастяжение стенок артерий, включая и экстракраниальные (например, височные артерии) приводит к приступу головной боли.

Происхождение мигрени объясняют также эмоциональными отклонениями, приводящими к распространяющейся корковой депрессии. Депрессия вызывает локальное накопление ионов калия в ткани мозга, инициирующее сосудистый спазм.

· Алкогольная боль вызвана прямым токсическим раздражающим действием ацетальдегида на мозговые оболочки.

Головные боли внечерепного происхождения

· Головные боли в результате мышечного спазма возникают при эмоциональном напряжении многих мышц, прикреплённых к черепу и плечевому поясу. Боль отражается по поверхности головы и напоминает внутричерепную боль.
· Головные боли при раздражении носовой полости и придаточных пазух носа не обладают большой интенсивностью и отражаются на фронтальной поверхности головы.

· Головные боли при нарушениях функции глаз могут возникать при сильных сокращениях ресничной мышцы, при попытках добиться лучшего видения. Это может вызывать рефлекторный спазм лицевых и наружных глазных мышц и появление головной боли. Второй вид боли может наблюдаться при «ожогах» сетчатки ультрафиолетовым излучением, а также при раздражении конъюнктивы.

Физиология боли

В узком смысле слова боль – это неприятное ощущение, возникающее при действии сверхсильных раздражителей, вызывающих структурно-функциональные нарушения в организме. Отличия боли от других ощущений в том, что она не информирует мозг о качестве раздражителя, а указывает на то, что раздражитель является повреждающим. Другой особенностью болевой сенсорной системы является наиболее сложной и мощный ее эфферентный контроль.

Болевой анализатор запускает в ЦНС несколько программ ответа организма на боль. Следовательно, боль имеет несколько компонентов. Сенсорный компонент боли характеризует ее как неприятное, тягостное ощущение; аффективный компонент – как сильную отрицательную эмоцию; мотивационный компонент – как отрицательную биологическую потребность, запускающую поведение организма, направленное на выздоровление. Моторный компонент боли представлен различными двигательными реакциями: от безусловных сгибательных рефлексов до двигательных программ антиболевого поведения. Вегетативный компонент характеризует нарушение функций внутренних органов и обмена веществ при хронических болях. Когнитивный компонент связан с самооценкой боли, боль при этом выступает как страдание. При деятельности других систем эти компоненты слабо выражены.

Биологическая роль боли определяется несколькими факторами. Боль исполняет роль сигнала об угрозе или повреждении тканей организма и предупреждает их. Боль имеет познавательную функцию: человек через боль учится избегать возможных опасностей внешней среды. Эмоциональный компонент боли выполняет функцию подкрепления при образовании условных рефлексов. Боль является фактором мобилизации защитно-приспособительных реакций организма при повреждении его тканей и органов.

Выделяют два вида боли – соматическую и висцеральную. Соматическую боль подразделяют на поверхностную и глубокую Поверхностная боль может быть ранняя (быстрая, эпикрическая) и поздняя (медленная, протопатическая).

Существуют три теории боли.

1. Теория интенсивности была предложена Э.Дарвином и А.Гольдштейнером. По этой теории боль не является специфическим чувством и не имеет своих специальных рецепторов. Она возникает при действии сверхсильных раздражителей на рецепторы пяти известных органов чувств. В формировании боли участвуют конвергенция и суммация импульсов в спинном и головном мозге.

2. Теория специфичности была сформулирована немецким физиологом М.Фреем. В соответствии с этой теорией боль является специфическим чувством, имеющим собственный рецепторный аппарат, афферентные волокна и структуры головного мозга, перерабатывающие болевую информацию. Эта теория в дальнейшем получила более полное экспериментальное и клиническое подтверждение.

3. Современная теория боли базируется преимущественно на теории специфичности. Было доказано существование специфичных болевых рецепторов. Вместе с тем в современной теории боли использовано положение о роли центральной суммации и конвергенции в механизмах боли. Наиболее крупными достижениями современной теории боли является разработка механизмов центрального восприятия боли и запуска противоболевой системы организма.

Болевые рецепторы

Болевые рецепторы являются свободными окончаниями чувствительных миелиновых нервных волокон Аδ и немиелиновых волокон С. Они найдены в коже, слизистых оболочках, надкостнице, зубах, мышцах, суставах, внутренних органах и их оболочках, сосудах. Их нет в нервной ткани головного и спинного мозга. Наибольшая их плотность имеется на границе дентина и эмали зуба.

Выделяют следующие основные типы болевых рецепторов:

1. Механоноцицепторы и механотермические ноцицепторы Аδ-волокон реагируют на сильные механические и термические раздражители, проводят быструю механическую и термическую боль, быстро адаптируются; расположены преимущественно в коже, мышцах, суставах, надкостнице; их афферентные нейроны имеют малые рецептивные поля.

2. Полисенсорные ноцицепторы С-волокон реагируют на механические, термические и химические раздражители, проводят позднюю плохо локализованную боль, медленно адаптируются; их афферентные нейроны имеют большие рецептивные поля.

Болевые рецепторы возбуждаются тремя видами раздражителей:

1. Механические раздражители, создающие давление более 40г/мм 2 при сдавливании, растяжении, сгибании, скручивании.

2. Термические раздражители могут быть тепловыми (> 45 0 С) и холодовыми (< 15 0 С).

3. Химические раздражители, освобождающиеся из поврежденных клеток тканей, тучных клеток, тромбоцитов (К + , Н + , серотонин, ацетилхолин, гистамин), плазмы крови (брадикинин, каллидин) и окончаний ноцицептивных нейронов (вещество Р). Одни из них возбуждают ноцицепторы (К + , серотонин, гистамин, брадикинин, АДФ), другие сенсибилизируют их.

Свойства болевых рецепторов: болевые рецепторы имеют высокий порог возбуждения, что обеспечивает их ответ только на чрезвычайные раздражители. Ноцицепторы С-афферентов плохо адаптируются к длительно действующим раздражителям. Возможно повышение чувствительности болевых рецепторов – снижение порога их раздражения при многократной или длительной стимуляции, что называется гипералгезией. При этом ноцицепторы способны отвечать на стимулы субпороговой величины, а также возбуждаться раздражителями других модальностей.

Проводящие пути болевой чувствительности

Нейроны, воспринимающие болевую импульсацию. От болевых рецепторов туловища, шеи и конечностей Аδ- и С-волокна первых чувствительных нейронов (их тела находятся в спинальных ганглиях) идут в составе спинномозговых нервов и входят через задние корешки в спинной мозг, где разветвляются в задних столбах и образуют синаптические связи прямо или через интернейроны со вторыми чувствительными нейронами, длинные аксоны которых входят в состав спиноталамических путей. При этом они возбуждают два вида нейронов: одни нейроны активируются только болевыми стимулами, другие – конвергентные нейроны – возбуждаются также и неболевыми стимулами. Вторые нейроны болевой чувствительности преимущественно входят в состав боковых спиноталамических путей, которые и проводят большую часть болевых импульсов. На уровне спинного мозга аксоны этих нейронов переходят на сторону, противоположную раздражению, в стволе головного мозга они доходят до таламуса и образуют синапсы на нейронах его ядер. Часть болевой импульсации первых афферентных нейронов переключаются через интернейроны на мотонейроны мышц-сгибателей и участвуют в формировании защитных болевых рефлексов. В боковом спиноталамическом пути выделяют эволюционно более молодой неоспиноталамический путь и древний палеоспиноталамический путь.

Неоспиноталамический путь проводит болевые сигналы по Аδ-волокнам преимущественно в специфические сенсорные (вентральные задние) ядра таламуса, имеющие хорошую топографическую проекцию периферии тела. Кроме этого небольшая часть импульсов поступает в ретикулярную формацию ствола и далее в неспецифические ядра таламуса. Передача возбуждения в синапсах этого пути осуществляется с помощью быстродействующего медиатора глутамата. Из специфических ядер таламуса болевые сигналы передаются преимущественно в сенсорную кору больших полушарий. Эти особенности формируют основную функцию неоспиноталамического пути – проведение «быстрой» боли и восприятие ее с высокой степенью локализации.

Палеоспиноталамический путь проводит болевые сигналы по С-волокнам преимущественно в неспецифические ядра таламуса прямо или после переключения в нейронах ретикулярной формации ствола мозга. Передача возбуждения в синапсах этого пути происходит более медленно. Медиатором является вещество Р. Из неспецифических ядер импульсация поступает в сенсорную и другие отделы коры больших полушарий. Небольшая часть импульсации поступает и в специфические ядра таламуса. В основном волокна этого пути оканчиваются на нейронах 1) неспецифических ядер таламуса; 2) ретикулярной формации; 3) центрального серого вещества; 4) голубого пятна; 5) гипоталамуса. Через палеоспиноталамический путь проводится «поздняя», плохо локализуемая боль, формируются аффективно-мотивационные проявления болевой чувствительности.

Кроме этого болевая чувствительность частично проводится по другим восходящим путям: переднему спиноталамическому, тонкому и клиновидному путям.

Вышеназванные пути проводят и другие виды чувствительности: температурную и тактильную.

Роль коры больших полушарий в восприятии боли

Полноценное чувственное восприятие боли организмом без участия коры головного мозга невозможно.

Первичное проекционное поле болевого анализатора находится в соматосенсорной коре задней центральной извилины. Оно обеспечивает восприятие «быстрой» боли и идентификацию места ее возникновения на теле. Для более точной идентификации локализации боли в процесс обязательно включается и нейроны моторной коры передней центральной извилины.

Вторичное проекционное поле расположено в соматосенсорной коре на границе пересечения центральной борозды с верхним краем височной доли. Нейроны данного поля имеют двусторонние связи с ядрами таламуса, что позволяет этому полю избирательно фильтровать, проходящие через таламус возбуждения болевого характера. А это в свою очередь позволяет данному полю вовлекаться в процессы, связанные с извлечением из памяти энграммы необходимого поведенческого акта, его реализации в деятельности эффекторов и оценки качества достигнутого полезного результата. Двигательные компоненты болевого поведения формируются в совместной деятельности моторной и премоторной коры, базальных ганглиев и мозжечка.

Лобная кора играет важную роль в восприятии боли. Она обеспечивает самооценку боли (ее когнитивный компонент) и формирование целенаправленного болевого поведения.

Лимбическая система (поясная извилина, гиппокамп, зубчатая извилина, миндалевидный комплекс височной доли) получает болевую информацию от передних ядер таламуса и формирует эмоциональный компонент боли, запускает вегетативные, соматические и поведенческие реакции, обеспечивающие приспособительные реакции к болевому раздражителю.

Некоторые виды болевых ощущений

Существуют боли, которые названы проекционными или фантомными . Их возникновение основано на законе проекции боли: какая бы часть афферентного пути не раздражалась, боль ощущается в области рецепторов данного сенсорного пути. По современным данным в формировании данного вида болевого ощущения участвуют все отделы болевой сенсорной системы.

Существуют также так называемые отраженные боли: когда боль ощущается не только в пораженном органе, но и в соответствующем дерматоме тела. Участки поверхности тела соответствующего дерматома, где возникает ощущение боли, назвали зонами Захарьина – Геда . Возникновение отраженных болей связано с тем, что нейроны, проводящие болевую импульсацию от рецепторов пораженного органа и кожи соответствующего дерматома, конвергируют на одном и том же нейроне спиноталамического пути. Раздражение этого нейрона с рецепторов пораженного органа в соответствии с законом проекции боли приводит к тому, что боль ощущается и в области кожных рецепторов.

Антиноцицептивная система

Антиболевая система состоит из четырех уровней: спинального, стволового, гипоталамического и коркового.

1. Спинальный уровень антиноцицептовной системы. Важным ее компонентом является «воротный контроль» спинного мозга, концепция которого имеет следующие основные положения: передача болевых нервных импульсов с первых нейронов на нейроны спиноталамических путей (вторые нейроны) в задних столбах спинного мозга модулируется спинальным воротным механизмом – тормозными нейронами, расположенными в желатинозном веществе спинного мозга. На этих нейронах оканчиваются разветвления аксонов различных сенсорных путей. В свою очередь нейроны желатинозной субстанции оказывают пресинаптическое торможение в местах переключения первых и вторых нейронов болевых и других сенсорных путей. Часть нейронов являются конвергентными: на них образуют синапсы нейроны не только от болевых, но и от других рецепторов. Спинальный воротный контроль регулируется соотношением импульсов, поступающих по афферентным волокнам большого диаметра (неболевая чувствительность) и малого диаметра (болевая чувствительность). Интенсивный поток импульсов по волокнам большого диаметра ограничивает передачу болевых сигналов на нейроны спиноталамических путей (закрывает «ворота»). Напротив, интенсивный поток болевых импульсов по первому афферентному нейрону, ингибируя тормозные интернейроны, облегчает передачу болевых сигналов на нейроны спиноталамических путей (открывает «ворота»). Спинальный воротный механизм находится под постоянным влиянием нервных импульсов структур ствола мозга, которые передаются по нисходящим путям как на нейроны желатинозной субстанции, так и на нейроны спиноталамических путей.

2. Стволой уровень антиноцицептивной системы. К стволовым структурам противоболевой системы относятся, во-первых, центральное серое вещество и ядра шва, образующие единый функциональный блок, во-вторых, крупноклеточное и парагигантоклеточное ядра ретикулярной формации и голубое пятно. Первый комплекс блокирует прохождение болевой импульсации на уровне релейных нейронов ядер задних рогов спинного мозга, а также релейных нейронов сенсорных ядер тройничного нерва, образующих восходящие пути болевой чувствительности. Второй комплекс возбуждает почти всю антиноцицептивную систему (см.рис.1).

3. Гипоталамический уровень антиноцицептивной системы, с одной стороны, функционирует самостоятельно, а с другой – выступает как настройка, контролирующая и регулирующая антиноцицептивные механизмы стволового уровня за счет связей гипоталамических нейронов разной ядерной принадлежности и разной нейрохимической специфичности. Среди них идентифицированы нейроны, в окончаниях аксонов которых выделяются энкефалины, β-эндорфин, норадреналин, дофамин см.рис.2).

4. Корковый уровень антиноцицептивной системы. Объединяет и контролирует деятельность антиноцицептивных структур различного уровня соматосенсорная область коры больших полушарий. При этом наиболее важную роль в активации спинальных и стволовых структур играет вторичная сенсорная область. Ее нейроны образуют наибольшее количество волокон нисходящего контроля болевой чувствительности, направляющиеся к задним рогам спинного мозга и ядрам ствола головного мозга. Вторичная сенсорная кора видоизменяет активность стволового комплекса антиноцицептивной системы. Кроме этого соматосенсорные поля коры больших полушарий контролируют проведение афферентных болевых импульсов через таламус. Кроме таламуса, кора большого мозга регламентирует прохождение болевой импульсации в гипоталамусе, лимбической системе, ретикулярной формации, спинном мозге. Ведущая роль в обеспечении кортико-гипоталамических влияний отводится нейронам лобной коры.

Медиаторы антиноцицептивной системы

К медиаторам противоболевой системы относят пептиды, которые образуются в головном мозге, аденогипофизе, мозговом слое надпочечников, желудочно-кишечном тракте, плаценте из неактивных предшественников.. Сейчас к опиатным медиаторам антиноцицептивной системы относят: 1) ά-, β-, γ-эндорфины; 2) энкефалины; 3) динорфины. Эти медиаторы действуют на три вида опиатных рецепторов: μ-, δ-, κ-рецепторы. Наиболее селективным стимулятором μ-рецепторов являются эндорфины, δ-рецепторов – энкефалины, а κ-рецепторов – динорфины. Плотность μ- и κ-рецепторов высокая в коре больших полушарий и в спинном мозгу, средняя – в стволе головного мозга; плотность δ-рецепторов средняя в коре больших полушарий и спинном мозгу, малая – в стволе мозга. Опиоидные пептиды угнетают действие веществ, вызывающих боль, на уровне ноцицепторов, уменьшают возбудимость и проводимость болевой импульсации, угнетают вызванную реакцию нейронов, находящихся в составе цепей, передающих болевую импульсацию. Эти пептиды поступают к нейронам болевой сенсорной системы с кровью и ликвором. Выделяются опиоидные медиаторы в синаптических окончаниях нейронов противоболевой системы. Аналгезирующий эффект эндорфинов высокий в головном и спинном мозге, эффект энкефалинов в этих структурах средний, эффект динорфинов в головном мозге низкий, в спинном мозге – высокий.

Рис.1. Взаимодействие основных элементов обезболивающей системы первого уровня: ствол мозга – спиной мозг. (светлые кружки – возбуждающие нейроны, черные – тормозящие).

Рис.2. Механизм работы обезболивающей системы организма второго уровня (гипоталамус – таламус – ствол мозга) с помощью опиоидов.

Светлые кружки – возбуждающие нейроны, черные - тормозящие.

Степень выраженности болевого ощущения не определяется одной лишь силой экзогенного или эндогенного болевого воздействия. Во многом оно зависит от соотношения активностей ноцицептивного и антиноцицептивного отделов системы боли, что имеет приспособительное значение.

Болевые рецепторы (ноцицепторы) реагируют на стимулы, угрожающие организму повреждением. Существуют два основных типа ноцицепторов: Aдельта-механоноцицепторы и полимодальные С-ноцицепторы (есть и еще несколько типов). Как следует из их названия, механоноцицепторы иннервируются тонкими миелинизированными, а полимодальные С-ноцицепторы - немиелинизированными С-волокнами. Aдельта-механоноцицепторы отвечают на сильное механическое раздражение кожи, например, укол иглой или щипок пинцетом. Обычно они не реагируют на термические и химические болевые стимулы, если только не были предварительно сенситизированы . В отличие от них полимодальные С-ноцицепторы реагируют на болевые стимулы разного вида: механические, температурные ( рис. 34.4) и химические.

Многие годы было непонятно, возникает ли боль в результате активации специфических волокон или в результате сверхактивности сенсорных волокон, в норме имеющих другие модальности. Последняя возможность, как кажется, в большей степени соответствует нашему обыденному опыту. За возможным исключением обоняния, любые избыточные по интенсивности сенсорные стимулы - слепящий свет, рвущий ухо звук, тяжелый удар, тепло или холод за пределами нормального диапазона - приводят к возникновению боли. Такой взгляд здравого смысла был заявлен Эразмом Дарвином (Erasmus Darwin) в конце 18-го и Уильямом Джеймсом (William James) в конце 19-го века. Здравый смысл, однако, здесь (как и везде) оставляет желать чего-то еще. В настоящее время мало кто сомневается, что в большинстве случаев ощущение боли возникает в результате возбуждения специализированных ноцицептивных волокон. Ноцицептивные волокна не имеют специализированных окончаний. Они присутствуют в виде свободных нервных окончаний в дермисе кожи и в иных местах организма. Гистологически они неотличимы от C-механорецепторов ( МЕХАНОЧУВСТВИТЕЛЬНОСТЬ) и - и A-дельта терморецепторов ( глава ТЕРМОЧУВСТВИТЕЛЬНОСТЬ). Они отличаются от упомянутых рецепторов тем, что порог для их адекватных стимулов выше нормального диапазона. Они могут подразделяться на несколько разных типов по критерию того, какая сенсорной модальность представляет для них адекватный стимул. Болезненные термические и механические стимулы детектируются миелинизированными волокнами малого диаметра, таблица 2.2 показывает, что они относятся к категории A дельта-волокон. Полимодальные волокна, которые отвечают на широкое разнообразие интенсивностей стимулов разной модальности, также имеет малый диаметр, но не миелинизированы. Таблица 2.2 показывает, что эти волокна относятся к классу С . A дельта-волокна проводят импульсы с частотой 5- 30 м/с и ответственны за "быструю" боль, острое колющее ощущение; С-волокна проводят медленнее - 0,5 - 2 м/с и сигнализируют о "медленной" боли, часто продолжительной и часто переходящей в глухую боль. АМТ (Механо-термо-ноцицепторы с А дельта-волокнами) делятся на два типа. АМТ типа 1 в основном обнаруживаются в неоволосенной коже. АМТ типа 2 находятся в основном в оволосенной коже Наконец, ноцицепторы с С-волокнами ( СМT волокна) имеют порог в диапазоне 38оС - 50оС и отвечают постоянной активностью, которая зависит от интенсивности стимула ( рис. 21.1а). АМТ и СМТ рецепторы , как показывают их названия, реагируют и на термические, и на механические стимулы. Физиологическая ситуация, тем не менее, далека от простоты. Механизм передачи этих двух модальностей различен. Аппликация капсайцина не влияет на чувствительность к механическим стимулам, но ингибирует ответ на тепловые. При этом, тогда как капсайцин имеет анальгетический эффект в отношении тепловой и химической чувствительности полимодальных С-волокон в роговице, на механочувствительности он не сказывается. Наконец, было показано, что механические стимулы, которые генерируют такой же уровень активности в СМТ-волокнах, что и термические, вызывают, тем не менее, меньшую боль. Возможно, неизбежно более широкая поверхность, задействованная тепловым стимулом, вовлекает активность большего количества СМТ-волокон, чем в случае механического стимула.

Сенситизация ноцицепторов (повышение чувствительности афферентных волокон рецепторов) происходит после их ответа на вредящий стимул. Сенситизированные ноцицепторы интенсивнее реагируют на повторный стимул, поскольку их порог снижен ( рис. 34.4). При этом наблюдается гипералгезия - более сильная боль в ответ на стимул прежней интенсивности, а также снижение болевого порога. Иногда ноцицепторы генерируют фоновый разряд, вызывающий спонтанную боль.

Сенситизация происходит, когда вблизи от ноцицептивных нервных окончаний высвобождаются в результате повреждения или воспаления ткани такие химические факторы, как ионы К+, брадикинин , серотонин , гистамин , эйкозаноиды ( простагландины и лейкотриены). Допустим, вредящий стимул, попав на кожу, разрушил клетки участка ткани около ноцицептора ( рис. 34.5 , а). Из погибающих клеток выходят ионы К+, которые деполяризуют ноцицептор. Кроме того, высвобождаются протеолитические ферменты; при их взаимодействии с глобулинами плазмы крови образуется брадикинин. Он связывается с рецепторными молекулами мембраны ноцицептора и активирует систему вторичного посредника, сенситизирующую нервное окончание. Другие высвобождаемые химические вещества, такие как серотонин тромбоцитов, гистамин тучных клеток , эйкозаноиды различных клеточных элементов, вносят в сенситизацию свой вклад, открывая ионные каналы либо активируя системы вторичных посредников. Многие из них воздействуют также на кровеносные сосуды, клетки иммунной системы, тромбоциты и другие эффекторы, участвующие в воспалении.

Кроме того, активация окончания ноцицептора может высвобождать такие регуляторные пептиды, как вещество Р (SP) и пептид, кодируемый геном кальцитонина ( CGRP), из других окончаний того же ноцицептора посредством аксон-рефлекса ( рис. 34.5 , б). Нервный импульс, возникший в одной из ветвей ноцицептора, направляется по материнскому аксону к центру. Одновременно он распространяется антидромно по периферическим ветвям аксона того же ноцицептора, в результате чего в коже высвобождаются вещество P и CGRP ( рис. 34.5 , б). Эти пептиды вызывают

Также описаны факторы, приводящие к активации болевых рецепторов мышц: механическая травма, нарушение целостности кровеносных сосудов и мышечных волокон , повышенная концентрация ионов водорода.

Болевые рецепторы мышц (ноцицепторы)

Понятие о ноцицептивной боли

Боль – особый вид чувствительности, связанный с действием патогенного раздражителя и характеризующийся субъективно неприятными ощущениями. Также боль характеризуется существенными изменениями в организме вплоть до серьезных нарушений его жизнедеятельности и даже смерти.

Ноцицептивной называют боль, обусловленную воздействием какого-либо фактора (механическая травма, ожог, воспаление и т.д.) на периферические болевые рецепторы при отсутствии повреждений других отделов нервной системы.

Чувствительные нервы и рецепторы

За болевую чувствительность отвечают чувствительные волокна типа Аδ и С-волокна. Эти волокна возбуждаются только при очень сильной болевой стимуляции. При их блокаде болевая чувствительность полностью исчезает. Окончания волокон Аδ и С представляют собой болевые рецепторы . Эти волокна иннервируют кожу, глубокие ткани, внутренние органы и мышцы .

Расположение болевых рецепторов мышц (ноцицепторов)

Болевые нервные окончания расположены в организме неравномерно. Они, как сетью, покрывают весь кожный покров. В мышцах они присутствуют в меньшем количестве. Болевые рецепторы мышц расположены диффузно между мышечными волокнами , в соединительно-тканных оболочках , окружающих мышечные волокна и мышцу в целом и в области мышечно-сухожильного соединения . Они проводят болевые импульсы от мышцы по Аδ -волокнам и С-волокнам к коре больших полушарий, где повышение импульсной активности от ноцицепторов воспринимается как чувство боли.

Активация ноцицепторов мышц

Мышечные ноцицепторы легко возбуждаются интенсивным повреждающим механическим воздействием. Активацию и повышение чувствительности болевых рецепторов расположенных между мышечными волокнами и в сухожилии могут вызывать разнообразные патофизиологические состояния. Наиболее известный вариант – острая травма.

Активация болевых рецепторов мышц может быть обусловлена не только механическим путем, но и нарушением целостности кровеносных сосудов и мышечных волокон . В результате этого происходит увеличение концентрации в ткани эндогенных веществ, вызывающее повышение чувствительности ноцицепторов. К веществам, вызывающим чувство боли, относят высокую концентрацию ионов водорода (Н +). Известно, что при выполнении силовых упражнений, направленных на гипертрофию мышечных волокон в них накапливается лактат и повышается концентрация ионов водорода. Это является одной из причин, вызывающей болезненные ощущения в мышцах.

Литература

  1. Алексеев В.В. Миогенные болевые синдромы: патогенез и терапия // Эффективная фармакотерапия, 2011.- Т. 17. С. 30-34.
  2. Боксер О.Я., Григорьев К.И. Наука о боли: патофизиологические и медико-психологические аспекты // Медицинская сестра, 2005.- 8.- С.2-5.