С чего начинается процесс свертывания крови? Как работает свертывание крови? Веществами способствующими свертыванию крови являются

Процесс свертывания крови начинается с кровопотери, но массивная кровопотеря, сопровождающаяся падением артериального давления, ведет к резким изменениям всей системы гемостаза.

Система свертывания крови (гемостаза)

Система свертывания крови — это сложный многокомпонентный комплекс гомеостаза человека, обеспечивающий сохранение целостности организма благодаря постоянному поддержанию жидкого состояния крови и формированию при необходимости различного типа тромбов, а также активации процессов заживления в местах сосудистых и тканевых повреждений.

Функционирование системы свертывания обеспечивается непрерывным взаимодействием сосудистой стенки и циркулирующей крови. Известны определенные компоненты, отвечающие за нормальную деятельность коагулологической системы:

  • эндотелиальные клетки сосудистой стенки,
  • тромбоциты,
  • адгезивные молекулы плазмы,
  • плазменные факторы свертывания,
  • системы фибринолиза,
  • системы физиологических первичных и вторичных антикоагулянтов-антипротеаз,
  • плазменная система физиологических первичных репарантов-заживителей.

Любые повреждения сосудистой стенки, «травмирование крови», с одной стороны, приводят к различной тяжести кровотечениям, а с другой - вызывают физиологические, а в последующем патологические изменения в системе гемостаза, которые способны сами по себе привести к гибели организма. К закономерным тяжелым и частым осложнениям массивной кровопотери относится острый синдром диссеминированного внутрисосудистого свертывания (острый ДВС-синдром).

При острой массивной кровопотере, а ее нельзя представить без повреждения сосудов, практически всегда имеет место локальный (в месте повреждения) тромбоз, который в сочетании с падением артериального давления может запустить острый ДВС-синдром, являющийся важнейшим и патогенетически наиболее неблагоприятным механизмом всех бед острой массивной кровопотери.

Эндотелиальные клетки

Эндотелиальные клетки сосудистой стенки обеспечивают поддержание жидкого состояния крови, непосредственно влияя на многие механизмы и звенья тромбообразования, полностью блокируя или эффективно сдерживая их. Сосуды обеспечивают ламинарность тока крови, что препятствует склеиванию клеточных и белковых компонентов.

Эндотелий несет на своей поверхности отрицательный заряд, как и циркулирующие в крови клетки, различные гликопротеины и другие соединения. Одноименно заряженные эндотелий и циркулирующие элементы крови отталкиваются, что препятствует слипанию клеток и белковых структур в циркуляторном русле.

Поддержание жидкого состояния крови

Поддержанию жидкого состояния крови способствуют:

  • простациклин (PGI 2),
  • NO и АДФаза,
  • ингибитор тканевого тромбопластина,
  • глюкозаминогликаны и, в частности, гепарин, антитромбин III, кофактор гепарина II, тканевой активатор плазминогена и др.

Простациклин

Блокада агглютинации и агрегации тромбоцитов в кровотоке осуществляется несколькими путями. Эндотелий активно вырабатывает простагландин I 2 (PGI 2), или простациклин, который ингибирует формирование первичных агрегатов тромбоцитов. Простациклин способен «разбивать» ранние агглютинаты и агрегаты тромбоцитов, вместе с тем являясь вазодилататором.

Окись азота (NO) и АДФаза

Дезагрегация тромбоцитов и вазодилатация осуществляются также путем выработки эндотелием окиси азота (NO) и так называемой АДФазы (фермента, расщепляющего аденозиндифосфат — АДФ) — соединения, вырабатываемого различными клетками и являющегося активным агентом, стимулирующим агрегацию тромбоцитов.

Система протеина С

Сдерживающее и ингибирующее влияние на свертывающую систему крови, преимущественно на ее внутренний путь активации, оказывает система протеина С. В комплекс этой системы входят:

  1. тромбомодулин,
  2. протеин С,
  3. протеин S,
  4. тромбин как активатор протеина С,
  5. ингибитор протеина С.

Эндотелиальные клетки вырабатывают тромбомодулин, который при участии тромбина активирует протеин С, переводя его соответственно в протеин Ca. Активированный протеин Са при участии протеина S инактивирует факторы Va и VIIIa, подавляя и ингибируя внутренний механизм свертывающей системы крови. Кроме того, активированный протеин Са стимулирует активность системы фибринолиза двумя путями: за счет стимуляции выработки и выброса из эндотелиальных клеток в кровоток тканевого активатора плазминогена, а также благодаря блокаде ингибитора тканевого активатора плазминогена (PAI-1).

Патология системы протеина С

Нередко наблюдаемая наследственная или приобретенная патология системы протеина С приводит к развитию тромботических состояний.

Фульминантная пурпура

Гомозиготный дефицит протеина С (фульминантная пурпура) — крайне тяжелая патология. Дети с фульминантной пурпурой практически нежизнеспособны и погибают в раннем возрасте от тяжелых тромбозов, острого ДВС-синдрома и сепсиса.

Тромбозы

Гетерозиготный наследственный дефицит протеина С или протеина S способствует возникновению тромбозов у молодых. Чаще наблюдаются тромбозы магистральных и периферических вен, тромбоэмболии легочной артерии, ранние инфаркты миокарда, ишемические инсульты. У женщин с дефицитом протеина С или S, принимающих гормональные контрацептивы, риск тромбозов (чаше тромбозов мозговых сосудов) возрастает в 10-25 раз.

Поскольку протеины С и S являются витамин К-зависимыми протеазами, вырабатываемыми в печени, лечение тромбозов непрямыми антикоагулянтами типа синкумара или пелентана у пациентов с наследственным дефицитом протеина С или S может приводить к усугублению тромботического процесса. Кроме того, у ряда больных при проведении лечения непрямыми антикоагулянтами (варфарином) могут развиваться периферические некрозы кожи («варфариновые некрозы »). Их появление практически всегда означает наличие гетерозиготною дефицита протеина С, что ведет к снижению фибринолитической активности крови, локальной ишемии и кожным некрозам.

V фактор Leiden

Еще одна патология, напрямую связанная с функционированием системы протеина С, получила название наследственной резистентности к активированному протеину С, или V фактор Leiden. По сути V фактор Leiden представляет собой мутантный V фактор с точечной заменой аргинина в 506-й позиции фактора V на глутамин. V фактор Leiden обладает повышенной резистентностью к прямому действию активированного протеина С. Если наследственный дефицит протеина С у пациентов преимущественно с венозными тромбозами встречается в 4-7% случаев, то V фактор Leiden, по данным разных авторов, - в 10-25%.

Ингибитор тканевого тромбопластина

Эндотелий сосудов также может ингибировать тромбообразование при активации . Эндотелиальные клетки активно вырабатывают ингибитор тканевого тромбопластина, который инактивирует комплекс тканевый фактор — фактор VIIa (ТФ-VIIa), что приводит к блокаде внешнего механизма свертывания крови, активизирующегося при попадании тканевого тромбопластина в кровоток, тем самым поддерживая текучесть крови в циркуляторном русле.

Глюкозаминогликаны (гепарин, антитромбин III, кофактор гепарина II)

Другой механизм поддержания жидкого состояния крови связан с выработкой эндотелием различных глюкозаминогликанов, среди которых известны гепаран- и дерматан-сульфат. Эти глюкозаминогликаны по строению и функциям близки к гепаринам. Вырабатываемый и выбрасываемый в кровоток гепарин связывается с циркулирующими в крови молекулами антитромбина III (AT III), активируя их. В свою очередь активированный AT III захватывает и инактивирует фактор Ха, тромбин и ряд других факторов свертывающей системы крови. Кроме механизма инактивации свертывания, осуществляющегося через АТ III, гепарины активируют так называемый кофактор гепарина II (КГ II). Активированный КГ II, как и AT III, ингибирует функции фактора Ха и тромбина.

Кроме влияния на активность физиологических антикоагулянтов-антипротеаз (AT III и КГ II), гепарины способны модифицировать функции таких адгезивных молекул плазмы, как фактор Виллебранда и фибронектин. Гепарин снижает функциональные свойства фактора Виллебранда, способствуя уменьшению тромботического потенциала крови. Фибронектин в результате гепариновой активации связывается с различными объектами-мишенями фагоцитоза — клеточными мембранами, тканевым детритом, иммунными комплексами, фрагментами коллагеновых структур, стафилококками и стрептококками. Вследствие стимулированных гепарином опсонических взаимодействий фибронектина активизируется инактивация мишеней фагоцитоза в органах макрофагальной системы. Очистка циркуляторного русла от объектов-мишеней фагоцитоза способствует сохранению жидкого состояния и текучести крови.

Кроме того, гепарины способны стимулировать выработку и выброс в циркуляторное русло ингибитора тканевого тромбопластина, что существенно снижает вероятность тромбоза при внешней активации свертывающей системы крови.

Процесс свертывания крови — тромбообразования

Вместе с описанным выше существуют механизмы, также связанные с состоянием сосудистой стенки, но не способствующие поддержанию жидкого состояния крови, а ответственные за ее свертывание.

Процесс свертывания крови начинается с повреждения целостности сосудистой стенки. При этом различают и внешний механизмы процесса формирования тромба.

При внутреннем механизме повреждение только эндотелиального слоя сосудистой стенки приводит к тому, что поток крови контактирует со структурами субэндотелия — с базальной мембраной, в которой основными тромбогенными факторами являются коллаген и ламинин. С ними взаимодействуют находящиеся в крови фактор Виллебранда и фибронектин; формируется тромбоцитарный тромб, а затем — фибриновый сгусток.

Необходимо отметить, что тромбы, формирующиеся в условиях быстрого кровотока (в артериальной системе), могут существовать практически только при участии фактора Виллебранда. Напротив, в формировании тромбов при относительно небольших скоростях кровотока (в микроциркуляторном русле, венозной системе) участвуют как фактор Виллебранда, так и фибриноген, фибронектин, тромбоспондин.

Другой механизм тромбообразования осуществляется при непосредственном участии фактора Виллебранда, который при повреждении целостности сосудов существенно увеличивается в количественном отношении вследствие поступления из телец Вейбола-Паллада эндотелия.

Системы и факторы свертывания крови

Тромбопластин

Важнейшую роль во внешнем механизме тромбообразования играет тканевый тромбопластин, поступающий в кровоток из интерстициального пространства после разрыва целостности сосудистой стенки. Он индуцирует тромбообразование, активируя свертывающую систему крови при участии VII фактора. Поскольку тканевый тромбопластин содержит фосфолипидную часть, тромбоциты в этом механизме тромбообразования участвуют мало. Именно появление тканевого тромбопластина в русле крови и его участие в патологическом тромбообразовании и определяют развитие острого ДВС-синдрома.

Цитокины

Следующий механизм тромбообразования реализуется с участием цитокинов — интерлейкина-1 и интерлейкина-6. Образующийся в результате их взаимодействия фактор некроза опухоли стимулирует выработку и выброс из эндотелия и моноцитов тканевого тромбопластина, о значении которого уже говорилось. Этим объясняется развитие локальных тромбов при различных заболеваниях, протекающих с четко выраженными воспалительными реакциями.

Тромбоциты

Специализированными клетками крови, участвующими в процессе ее свертывания, являются тромбоциты - безъядерные клетки крови, представляющие собой фрагменты цитоплазмы мегакариоцитов. Продукция тромбоцитов связана с определенным — тромбопоэтином, регулирующим тромбоцитопоэз.

Количество тромбоцитов в крови составляет 160-385×10 9 /л. Они хорошо видны в световом микроскопе, поэтому при проведении дифференциальной диагностики тромбозов или кровоточивости микроскопия мазков периферической крови необходима. В норме размер тромбоцита не превышает 2-3,5 мкм (около ⅓-¼ диаметра эритроцита). При световой микроскопии неизмененные тромбоциты выглядят как округлые клетки с ровными краями и красно-фиолетовыми гранулами (α-гранулы). Продолжительность жизни тромбоцитов составляет в среднем 8-9 сут. В норме они дискоидной формы, но при активации принимают форму сферы с большим количеством цитоплазматических выпячиваний.

В тромбоцитах имеется 3 типа специфических гранул:

  • лизосомы, содержащие в большом количестве кислые гидролазы и другие ферменты;
  • α-гранулы, содержащие множество различных белков (фибриноген, фактор Виллебранда, фибронектин, тромбоспондин и др.) и окрашивающиеся по Романовскому-Гимзе в фиолетово-красный цвет;
  • δ-гранулы — плотные гранулы, содержащие большое количество серотонина, ионов К + , Ca 2+ , Mg 2+ и др.

В α-гранулах содержатся строго специфичные белки тромбоцитов - такие, как 4-й пластиночный фактор и β-тромбоглобулин, являющиеся маркерами активации тромбоцитов; их определение в плазме крови может помочь в диагностике текущих тромбозов.

Кроме того, в структуре тромбоцитов имеются система плотных трубочек, являющаяся как бы депо для ионов Ca 2+ , а также большое количество митохондрий. При активации тромбоцитов происходит ряд биохимических реакций, которые при участии циклооксигеназы и тромбоксансинтетазы приводят к образованию тромбоксана А 2 (ТХА 2) из арахидоновой кислоты — мощного фактора, отвечающего за необратимую агрегацию тромбоцитов.

Тромбоцит покрыт 3-слойной мембраной, на внешней ее поверхности располагаются различные рецепторы, многие из которых являются гликопротеинами и взаимодействуют с различными белками и соединениями.

Тромбоцитарный гемостаз

Рецептор гликопротеина Iа связывается с коллагеном, рецептор гликопротеина Ib взаимодействует с фактором Виллебранда, гликопротеинами IIb-IIIa — с молекулами фибриногена, хотя может связываться и с фактором Виллебранда, и с фибронектином.

При активации тромбоцитов агонистами — АДФ, коллагеном, тромбином, адреналином и др. - на их внешней мембране появляется 3-й пластиночный фактор (мембранный фосфолипид), активирующий скорость свертывания крови, повышая ее в 500-700 тыс. раз.

Плазменные факторы свертывания крови

Плазма крови содержит несколько специфических систем, участвующих в каскаде свертывания крови. Это системы:

  • адгезивных молекул,
  • факторов свертывания крови,
  • факторов фибринолиза,
  • факторов физиологических первичных и вторичных антикоагулянтов-антипротеаз,
  • факторов физиологических первичных репарантов-заживителей.

Система адгезивных молекул плазмы

Система адгезивных молекул плазмы представляет собой комплекс гликопротеинов, отвечающих за межклеточные, клеточно-субстратные и клеточно-белковые взаимодействия. К ней относятся:

  1. фактор Виллебранда,
  2. фибриноген,
  3. фибронектин,
  4. тромбоспондин,
  5. витронектин.
Фактор Виллебранда

Фактор Виллебранда высокомолекулярный гликопротеин с молекулярной массой 10 3 кД и более. Фактор Виллебранда выполняет множество функций, но основные из них две:

  • взаимодействие с VIII фактором, благодаря чему происходит защита антигемофильного глобулина от протеолиза, что увеличивает продолжительность его жизни;
  • обеспечение процессов адгезии и агрегации тромбоцитов в циркуляторном русле, особенно при высоких скоростях кровотока в сосудах артериальной системы.

Снижение уровня фактора Виллебранда ниже 50%, наблюдающееся при болезни или синдроме Виллебранда, приводит к выраженной петехиальной кровоточивости, как правило, микроциркуляторного типа, проявляющейся синяковостью при небольших травмах. Однако при тяжелой форме болезни Виллебранда может наблюдаться гематомный тип кровоточивости, подобный гемофилии ().

Напротив, существенное повышение концентрации фактора Виллебранда (более 150%) может приводить к тромбофилическому состоянию, что нередко клинически проявляется различного типа тромбозами периферических вен, инфарктом миокарда, тромбозами системы легочной артерии или мозговых сосудов.

Фибриноген — фактор I

Фибриноген, или фактор I, участвует во многих межклеточных взаимодействиях. Его основными функциями являются участие в формировании фибринового тромба (армирование тромба) и осуществление процесса агрегации тромбоцитов (прикрепление одних тромбоцитов к другим) благодаря специфическим тромбоцитарным рецепторам гликопротеинов IIb-IIIа.

Плазменный фибронектин

Плазменный фибронектин — адгезивный гликопротеин, взаимодействующий с различными факторами свертывания крови.Также одной из функций плазменного фибронектина является репарация дефектов сосудов и тканей. Показано, что нанесение фибронектина на участки тканевых дефектов (трофические язвы роговицы глаза, эрозии и язвы кожных покровов) способствует стимуляции репаративных процессов и более быстрому заживлению.

Нормальная концентрация плазменного фибронектина в крови - около 300 мкг/мл. При тяжелых травмах, массивной кровопотере, ожогах, длительных полостных операциях, сепсисе, остром ДВС-синдроме в результате потребления уровень фибронектина падает, что снижает фагоцитарную активность макрофагальной системы. Именно этим можно объяснить высокую частоту инфекционных осложнений у лиц, перенесших массивную кровопотерю, и целесообразность назначения пациентам переливания криопреципитата или свежезамороженной плазмы, содержащих в большом количестве фибронектин.

Тромбоспондин

Основными функциями тромбоспондина являются обеспечение полноценной агрегации тромбоцитов и связывание их с моноцитами.

Витронектин

Витронектин, или белок, связывающийся со стеклом, участвует в нескольких процессах. В частности, он связывает комплекс АТ III-тромбин и в дальнейшем выводит его из циркуляции через макрофагальную систему. Кроме того, витронектин блокирует клеточно-литическую активность конечного каскада факторов системы комплемента (комплекс С 5 -С 9), тем самым препятствуя реализации цитолитического эффекта активации системы комплемента.

Факторы свертывания крови

Система плазменных факторов свертывания крови — это сложный многофакторный комплекс, активация которого приводит к формированию стойкого фибринового сгустка. Она играет основную роль в остановке кровотечения при всех вариантах повреждения целостности сосудистой стенки.

Система фибринолиза

Система фибринолиза является важнейшей системой, препятствующей бесконтрольному свертыванию крови. Активация системы фибринолиза реализуется по внутреннему либо по внешнему механизму.

Внутренний механизм активации

Внутренний механизм активации фибринолиза начинается с активации плазменного XII фактора (фактора Хагемана) при участии высокомолекулярного кининогена и калликреин-кининовой системы. В результате плазминоген переходит в плазмин, который расщепляет молекулы фибрина на мелкие фрагменты (X, Y, D, Е), опсоннзируюшиеся плазменным фибронектмном.

Внешний механизм активации

Внешний путь активации фибринолитической системы может осуществляться стрептокиназой, урокиназой либо тканевого активатора плазминогена. Внешний путь активации фибринолиза часто используется в клинической практике для лизирования острых тромбозов различной локализации (при тромбоэмболии легочной артерии, остром инфаркте миокарда и др.).

Система первичных и вторичных антикоагулянтов-антипротеаз

Система физиологических первичных и вторичных антикоагулянтов-антипротеаз существует в организме человека для инактивации различных протеаз, плазменных факторов свертывания и многих компонентов фибринолитической системы.

К первичным антикоагулянтам относится система, включающая гепарин, AT III и КГ II. Эта система преимущественно ингибирует тромбин, фактор Ха и ряд других факторов свертывающей системы крови.

Система протеина С, как уже отмечалось, ингибирует Va и VIIIa плазменные факторы свертывания, что в итоге тормозит свертывание крови по внутреннему механизму.

Система ингибитора тканевого тромбопластина и гепарин ингибируют внешний путь активации свертывания крови, а именно комплекс ТФ-VII фактор. Гепарин в этой системе играет роль активатора выработки и выброса в кровоток ингибитора тканевого тромбопластинаиз эндотелия сосудистой стенки.

PAI-1 (ингибитор тканевого активатора плазминогена) является основной антипротеазой, инактивирующей активность тканевого активатора плазминогена.

К физиологическим вторичным антикоагулянтам-антипротеазам относятся компоненты, концентрация которых повышается в процессе свертывания крови. Одним из основных вторичных антикоагулянтов является фибрин (антитромбин I). Он активно сорбирует на своей поверхности и инактивирует циркулирующие в кровотоке свободные молекулы тромбина. Инактивировать тромбин могут также дериваты факторов Va и VIIIa. Кроме того, в крови тромбин инактивируют циркулирующие молекулы растворимого гликокалицина, которые представляют собой остатки рецептора тромбоцитов гликопротеина Ib. В составе гликокалицина имеется определенная последовательность — «ловушка» для тромбина. Участие растворимого гликокалицина в инактивации циркулирующих молекул тромбина позволяет достигать самоограничения тромбообразования.

Система первичных репарантов-заживителей

В плазме крови находятся определенные факторы, которые способствуют процессам заживления и репарации сосудистых и тканевых дефектов, - так называемая физиологическая система первичных репарантов-заживителей. В эту систему входят:

  • плазменный фибронектин,
  • фибриноген и его производное фибрин,
  • трансглутаминаза или XIII фактор свертывающей системы крови,
  • тромбин,
  • фактор роста тромбоцитов - тромбопоэтин.

О роли и значении каждого из этих факторов в отдельности уже говорилось.

Механизм свертывания крови


Выделяют внутренний и внешний механизм свертывания крови.

Внутренний путь свертывания крови

Во внутреннем механизме свертывания крови участвуют факторы, находящиеся в крови в нормальных условиях.

По внутреннему пути процесс свертывания крови начинается с контактной или протеазной активации XII фактора (или фактора Хагемана) при участии высокомолекулярного кининогена и калликреин-кининовой системы.

XII фактор превращается в XIIа (активированный) фактор, который активирует XI фактор (предшественник плазменного тромбопластина), переводя его в фактор ХIа.

Последний активирует IX фактор (антигемофилический фактор В, или фактор Кристмаса), переводя его при участии фактора VIIIa (антигемофилический фактор А) в фактор IХа. В активации IX фактора участвуют ионы Ca 2+ и 3-й тромбоцитарный фактор.

Комплекс факторов IХа и VIIIa с ионами Ca 2+ и 3-м тромбоцитарным фактором активирует X фактор (фактор Стюарта), переводя его в фактор Ха. В активации X фактора принимает также участие фактор Va (проакцелерин).

Комплекс факторов Ха, Va, ионов Са (IV фактор) и 3-го тромбоцитарного фактора называется протромбиназой; она активирует протромбин (или II фактор), превращая его в тромбин.

Последний расщепляет молекулы фибриногена, переводя его в фибрин.

Фибрин из растворимой формы под влиянием фактора XIIIа (фибринстабилизирующий фактор) превращается в нерастворимый фибрин, который непосредственно и осуществляет армирование (укрепление) тромбоцитарного тромба.

Внешний путь свертывания крови

Внешний механизм свертывания крови осуществляется при попадании в циркуляторное русло из тканей тканевого тромбопластина (или III, тканевого, фактора).

Тканевый тромбопластин связывается с VII фактором (проконвертином), переводя его в фактор VIIa.

Последний активирует X фактор, переводя его в фактор Ха.

Дальнейшие превращения свертывающего каскада такие же, как при активации плазменных факторов свертывания по внутреннему механизму.

Механизм свертывания крови кратко

В целом механизм свертывания крови кратко может быть представлен как ряд последовательных этапов:

  1. в результате нарушения нормального кровотока и повреждения целостности сосудистой стенки развивается дефект эндотелия;
  2. к обнажившейся базальной мембране эндотелия (к коллагену, ламинину) прилипают фактор Виллебранда и плазменный фибронектин;
  3. циркулирующие тромбоциты также прилипают к коллагену и ламинину базальной мембраны, а затем к фактору Виллебранда и фибронектину;
  4. адгезия тромбоцитов и их агрегация приводят к появлению на их внешней поверхностной мембране 3-го пластиночного фактора;
  5. при непосредственном участии 3-го пластиночного фактора происходит активация плазменных факторов свертывания, что приводит к образованию в тромбоцитарном тромбе фибрина — начинается армирование тромба;
  6. активируется система фибринолиза как по внутреннему (через XII фактор, высокомолекулярный кининоген и калликреин-кининовую систему), так и по внешнему (под влиянием ТАП) механизмам, останавливающая дальнейшее тромбообразование; при этом происходит не только лизирование тромбов, но и образование большого количества продуктов деградации фибрина (ПДФ), которые в свою очередь блокируют патологическое тромбообразование, обладая фибринолитической активностью;
  7. начинаются репарация и заживление сосудистого дефекта под влиянием физиологических факторов репаративно-заживительной системы (плазменного фибронектина, трансглутаминазы, тромбопоэтина и др.).

При острой массивной кровопотере, осложненной шоком, равновесие в системе гемостаза, а именно между механизмами тромбообразования и фибринолиза быстро нарушается, так как потребление существенно превосходит продукцию. Развивающееся истощение механизмов свертывания крови и является одним из звеньев развития острого ДВС-синдрома.

При случайных повреждениях мелких кровеносных сосудов возникающее кровотечение через некоторое время прекращается. Это связано с образованием в месте повреждения сосуда тромба или сгустка. Данный процесс называется свёртыванием крови.

В настоящее время существует классическая ферментативная теория свертывания крови – теория Шмидта – Моравица. Положения этой теории представлены на схеме (рис. 11):

Рис. 11. Схема свертывания крови

Повреждение кровеносного сосуда вызывает каскад молекулярных процессов, в результате образуется сгусток крови - тромб, прекращающий вытекание крови. В месте повреждения к открывшемуся межклеточному матриксу прикрепляются тромбоциты; возникает тромбоцитарная пробка. Одновременно включается система реакций, ведущих к превращению растворимого белка плазмы фибриногена в нерастворимый фибрин, который откладывается в тромбоцитарной пробке и на её поверхности, образуется тромб.

Процесс свёртывания крови протекает в две фазы.

В первой фазе протромбин переходит в активный фермент тромбин под влиянием тромбокиназы, содержащейся в тромбоцитах и освобождающейся из них при разрушении кровяных пластинок, и ионов кальция.

Во второй фазе под влиянием образовавшегося тромбина фибриноген превращается в фибрин.

Весь процесс свёртывания крови представлен следующими фазами гемостаза:

а) сокращение поврежденного сосуда;

б) образование в месте повреждения рыхлой тромбоцитарной пробки, или белого тромба. Коллаген сосуда служит связующим центром для тромбоцитов. При агрегации тромбоцитов освобождаются вазоактивные амины, которые стимулируют сужение сосудов;

в) формирование красного тромба (кровяной сгусток);

г) частичное или полное растворение сгустка.

Белый тромб образуется из тромбоцитов и фибрина; в нем относительно мало эритроцитов (в условиях высокой скорости кровотока). Красный тромб состоит из эритроцитов и фибрина (в областях замедленного кровотока).

В процессе свертывания крови участвуют факторы свертывания крови. Факторы свертывания, связанные с тромбоцитами, принято обозначать арабскими цифрами (1, 2, 3 и т.д.), а факторы свертывания, находящиеся в плазме крови, обозначают римскими цифрами.

Фактор I(фибриноген) - гликопротеин. Синтезируется в печени.

Фактор II(протромбин) - гликопротеин. Синтезируется в печени при участии витамин К. Способен связывать ионы кальция. При гидролитическом расщеплении протромбина образуется активный фермент свертывания крови.

Фактор III(тканевый фактор, или тканевый тромбопластин) образуется при повреждении тканей. Липопротеин.

Фактор IV(ионы Са 2+). Необходимы для образования активного фактораXи активного тромбопластина тканей, активации проконвертина, образования тромбина, лабилизации мембран тромбоцитов.

Фактор V(проакцелерин) - глобулин. Предшественник акцелерина, синтезируется в печени.

Фактор VII(антифибринолизин, проконвертин)- предшественник конвертина. Синтезируется в печени при участии витамина К.

Фактор VIII(антигемофильный глобулин А) необходим для формирования активного фактораX. Врожденный недостаток фактораVIII- причина гемофилии А.

Фактор IX(антигемофильный глобулин В, Кристмас-фактор) принимает участие в образовании активного фактораX. При недостаточностьи фактораIXразвивается гемофилия В.

Фактор X(фактор Стюарта-Прауэра) - глобулин. ФакторXучаствует в образовании тромбина из протромбина. Синтезируется клетками печени при участии витамина К.

Фактор XI(фактор Розенталя) - антигемофильный фактор белковой природы. Недостаточность наблюдается при гемофилии С.

Фактор XII(фактор Хагемана) участвует в пусковом механизме свертывания крови, стимулирует фибринолитическую активность, другие защитные реакции организма.

Фактор XIII(фибринстабилизирующий фактор) - участвует в образовании межмолекулярных связей в фибрин-полимере.

Факторы тромбоцитов. В настоящее время известно около 10 отдельных факторов тромбоцитов. Например: Фактор 1- адсорбированный на поверхности тромбоцитов проакцелерин. Фактор 4 - антигепариновый фактор.

В нормальных условиях тромбина в крови нет, он образуется из белка плазмы протромбина под действием протеолитического фермента фактора Ха (индекс а - активная форма), который образуется при кровопотере из фактора X. Фактор Ха превращает протромбин в тромбин только в присутствии ионов Са 2 + и других факторов свертывания.

Фактор III, переходящий в плазму крови при повреждении тканей, и фактор 3 тромбоцитов создают предпосылки для образования затравочного количества тромбина из протромбина. Он катализирует превращение проакцелерина и проконвертина в акцелерин (факторVa) и в конвертин (факторVIIa).

При взаимодействии перечисленных факторов, а также ионов Са 2+ происходит образование фактора Ха. Затем происходит образование тромбина из протромбина. Под влиянием тромбина от фибриногена отщепляются 2 пептида А и 2 пептида В. Фибриноген превращается в хорошо растворимый фибрин-мономер, который быстро полимеризуется в нерастворимый фибрин-полимер при участии фибринстабилизирующего фактора- фактораXIII(фермент трансглутаминаза) в присутствии ионов Са 2+ (рис. 12).

Фибриновый тромб прикрепляется к матриксу в области повреждения сосуда при участии белка фибронектина. Вслед за образованием нитей фибрина происходит их сокращение, для чего необходима энергия АТФ и фактор 8 тромбоцитов (тромбостенин).

У людей с наследственными дефектами трансглутаминазы кровь свертывается так же, как у здоровых, однако тромб получается хрупкий, поэтому легко возникают вторичные кровотечения.

Кровотечение из капилляров и мелких сосудов останавливается уже при образовании тромбоцитной пробки. Для остановки кровотечения из более крупных сосудов необходимо быстрое образование прочного тромба, чтобы свести к минимуму потерю крови. Это достигается каскадом ферментных реакций с механизмами усиления на многих ступенях.

Различают три механизма активации ферментов каскада:

1. Частичный протеолиз.

2. Взаимодействие с белками-активаторами.

3. Взаимодействие с клеточными мембранами.

Ферменты прокоагулянтного пути содержат γ-карбоксиглутаминовую кислоту. Радикалы карбоксиглутаминовой кислоты образуют центры связывания ионов Са 2+ . В отсутствие ионов Са 2+ кровь не свертывается.

Внешний и внутренний пути свёртывания крови.

Во внешнем пути свертывания крови участвуют тромбопластин (тканевой фактор, факторIII), проконвертин (факторVII), фактор Стюарта (факторX), проакцелерин (факторV), а также Са 2+ и фосфолипиды мембранных поверхностей, на которых образуется тромб. Гомогенаты многих тканей ускоряют свёртывание крови: это действие называют тромбопластиновой активностью. Вероятно, она связана с наличием в тканях какого-то специального белка. ФакторыVIIиX- проферменты. Они активируются путём частичного протеолиза, превращаясь в протеолитические ферменты - факторыVIIа иXа соответственно. ФакторV– это белок, который при действии тромбина превращается в факторV", который не является ферментом, но активирует ферментXа по аллостерическому механизму; активация усиливается в присутствии фосфолипидов и Са 2+ .

В плазме крови постоянно содержатся следовые количества фактора VIIа. При повреждении тканей и стенок сосуда освобождается факторIII– мощный активатор фактораVIIа; активность последнего увеличивается более чем в 15000 раз. ФакторVIIа отщепляет часть пептидной цепи фактораX, превращая его в фермент - факторXа. Сходным образомXа активирует протромбин; образовавшийся тромбин катализирует превращение фибриногена в фибрин, а также превращение предшественника трансглутаминазы в активный фермент (факторXIIIа). Этот каскад реакций имеет положительные обратные связи, усиливающие конечный результат. ФакторXа и тромбин катализируют превращение неактивного фактораVIIв ферментVIIа; тромбин превращает факторVв факторV", который вместе с фосфолипидами и Са 2+ в 10 4 –10 5 раз повышает активность фактораXа. Благодаря положительным обратным связям скорость образования самого тромбина и, следовательно, превращения фибриногена в фибрин нарастают лавинообразно, и в течение 10-12 с кровь свёртывается.

Свёртывание крови по внутреннему механизму происходит значительно медленнее и требует 10-15 мин. Этот механизм называют внутренним, потому что для него не требуется тромбопластин (тканевой фактор) и все необходимые факторы содержатся в крови. Внутренний механизм свёртывания также представляет собой каскад последовательных активаций проферментов. Начиная со стадии превращения фактораXвXа, внешний и внутренний пути одинаковы. Как и внешний путь, внутренний путь свёртывания имеет положительные обратные связи: тромбин катализирует превращение предшественниковVиVIIIв активаторыV" иVIII", которые в конечном итоге увеличивают скорость образования самого тромбина.

Внешний и внутренний механизмы свёртывания крови взаимодействуют между собой. Фактор VII, специфичный для внешнего пути свёртывания, может быть активирован факторомXIIа, который участвует во внутреннем пути свёртывания. Это превращает оба пути в единую систему свёртывания крови.

Гемофилии. Наследственные дефекты белков, участвующих в свёртывании крови, проявляются повышением кровоточивости. Наиболее часто встречается болезнь, вызванная отсутствием фактораVIII– гемофилия А. Ген фактораVIIIлокализован вX- хромосоме; повреждение этого гена проявляется как рецессивный признак, поэтому у женщин гемофилии А не бывает. У мужчин, имеющих однуX-хромосому, наследование дефектного гена приводит к гемофилии. Признаки болезни обычно обнаруживаются в раннем детстве: при малейшем порезе, а то и спонтанно возникают кровотечения; характерны внутрисуставные кровоизлияния. Частая потеря крови приводит к развитию железодефицитной анемии. Для остановки кровотечения при гемофилии вводят свежую донорскую кровь, содержащую факторVIII, или препараты фактораVIII.

Гемофилия В. Гемофилия В обусловлена мутациями гена фактора IX, который, как и ген фактораVIII, локализован в половой хромосоме; мутации рецессивны, следовательно, гемофилия В бывает только у мужчин. Гемофилия В встречается примерно в 5 раз реже, чем гемофилия А. Лечат гемофилию В введением препаратов фактораIX.

При повышенной свертываемости крови могут образоваться внутрисосудистые тромбы, закупоривающие неповрежденные сосуды (тромботические состояния, тромбофилии).

Фибринолиз. Тромб в течение нескольких дней после образования рассасывается. Главная роль в его растворении принадлежит протеолитическому ферменту плазмину. Плазмин гидролизирует в фибрине пептидные связи, образованные остатками аргинина и триптофана, причём образуются растворимые пептиды. В циркулирующей крови находится предшественник плазмина – плазминоген. Он активируется ферментом урокиназой, который содержится во многих тканях. Пламиноген может активироваться калликреином, также имеющимся в тромбе. Плазмин может активироваться и в циркулирующей крови без повреждения сосудов. Там плазмин быстро инактивируется белковым ингибитором α 2 - антиплазмином, в то время как внутри тромба он защищён от действия ингибитора. Урокиназа – эффективное средство для растворения тромбов или предупреждения их образования при тромбофлебитах, тромбоэмболии легочных сосудов, инфаркте миокарда, хирургических вмешательствах.

Противосвёртывающая система. При развитии системы свёртывания крови в ходе эволюции решались две противоположные задачи: предотвращать вытекание крови при повреждении сосудов и сохранять кровь в жидком состоянии в неповреждённых сосудах. Вторая задача решается противосвёртывающей системой, которая представлена набором белков плазмы, ингибирующих протеолитические ферменты.

Белок плазмы антитромбин IIIингибирует все протеиназы, участвующие в свёртывании крови, кроме фактораVIIа. Он не действует на факторы, находящиеся в составе комплексов с фосфолипидами, а только на те, которые находятся в плазме в растворённом состоянии. Следовательно, он нужен не для регуляции образования тромба, а для устранения ферментов, попадающих в кровоток из места образования тромба, тем самым он предотвращает распространение свёртывания крови на поврежденные участки кровеносного русла.

В качестве препарата, предотвращающего свёртывание крови, применяется гепарин. Гепарин усиливает ингибирующее действие антитромбина III: присоединение гепарина индуцирует конформационные изменения, которые повышают сродство ингибитора к тромбину и другим факторам. После соединения этого комплекса с тромбином гепарин освобождается и может присоединяться к другим молекулам антитромбинаIII. Таким образом, каждая молекула гепарина может активировать большое количество молекул антитромбинаIII; в этом отношении действие гепарина сходно с действием катализаторов. Гепарин применяют как антикоагулянт при лечении тромботических состояний. Известен генетический дефект, при котором концентрация антитромбинаIIIв крови вдвое меньше, чем в норме; у таких людей часто наблюдаются тромбозы. АнтитромбинIII– главный компонент противосвёртывающей системы.

В плазме крови есть и другие белки – ингибиторы протеиназ, которые также могут уменьшать вероятность внутрисосудистого свёртывания крови. Таким белком является α 2 - макроглобулин, который ингибирует многие протеиназы, и не только те, которые участвуют в свёртывании крови. α 2 -Макроглобулин содержит участки пептидной цепи, которые являются субстратами многих протеиназ; протеиназы присоединяются к этим участкам, гидролизируют в них некоторые пептидные связи, в результате чего изменяется конформация α 2 -макроглобулина, и он захватывает фермент, подобно капкану. Фермент при этом не повреждается: в комплексе с ингибитором он способен гидролизировать низкомолекулярные пептиды, но для крупных молекул активный центр фермента не доступен. Комплекс α 2 -макроглобулина с ферментом быстро удаляется из крови: время его полужизни в крови около 10 мин. При массивном поступлении в кровоток активированных факторов свёртывания крови мощность противосвёртывающей системы может оказаться недостаточной, и появляется опасность тромбозов.

Витамин К. В пептидных цепях факторовII,VII,IX, иXсодержится необычная аминокислота - γ-карбоксиглутаминовая. Эта аминокислота образуется из глутаминовой кислоты в результате посттрансляционной модификации указанных белков:

Реакции, в которых участвуют факторы II,VII,IX, иX, активируются ионами Са 2+ и фосфолипидами: радикалы γ-карбоксиглутаминовой кислоты образуют центры связывания Са 2+ на этих белках. Перечисленные факторы, а также факторыV" иVIII" прикрепляютя к бислойным фосфолипидным мембранам и друг к другу при участии ионов Са 2+ , и в таких комплексах происходит активация факторовII,VII,IX, иX. Ион Са 2+ активирует также и некоторые другие реакции свёртывания: декальцинированная кровь не свёртывается.

Превращение глутамильного остатка в остаток γ-карбоксиглутаминовой кислоты катализируется ферментом, коферментом которого служит витамин К. Недостаточность витамина К проявляется повышенной кровоточивостью, подкожными и внутренними кровоизлияниями. В отсутствие витамина К образуются факторы II,VII,IX, иX, не содержащие γ-карбоксиглутаминовых остатков. Такие проферменты не могут превращаться в активные ферменты.

Свёртывание крови - это важнейший этап работы системы гемостаза , отвечающий за остановку кровотечения при повреждении сосудистой системы организма. Совокупность взаимодействующих между собой весьма сложным образом различных факторов свёртывания крови образует систему свёртывания крови .

Свёртыванию крови предшествует стадия первичного сосудисто-тромбоцитарного гемостаза. Этот первичный гемостаз почти целиком обусловлен сужением сосудов и механической закупоркой агрегатами тромбоцитов места повреждения сосудистой стенки. Характерное время для первичного гемостаза у здорового человека составляет 1-3 минуты . Собственно свёртыванием крови (гемокоагуляция, коагуляция, плазменный гемостаз, вторичный гемостаз) называют сложный биологический процесс образования в крови нитей белка фибрина , который полимеризуется и образует тромбы, в результате чего кровь теряет текучесть, приобретая творожистую консистенцию. Свёртывание крови у здорового человека происходит локально, в месте образования первичной тромбоцитарной пробки. Характерное время образования фибринового сгустка - около 10 минут . Свёртывание крови - ферментативный процесс.

Основоположником современной физиологической теории свёртывания крови является Александр Шмидт . В научных исследованиях XXI века , проведённых на базе Гематологического научного центра под руководством Атауллаханова Ф. И. , было убедительно показано , что свёртывание крови представляет собой типичный автоволновой процесс , в котором существенная роль принадлежит эффектам бифуркационной памяти .

Энциклопедичный YouTube

  • 1 / 5

    Процесс гемостаза сводится к образованию тромбоцитарно-фибринового сгустка. Условно его разделяют на три стадии :

    1. временный (первичный) спазм сосудов;
    2. образование тромбоцитарной пробки за счёт адгезии и агрегации тромбоцитов;
    3. ретракция (сокращение и уплотнение) тромбоцитарной пробки.

    Повреждение сосудов сопровождается немедленной активацией тромбоцитов. Адгезия (прилипание) тромбоцитов к волокнам соединительной ткани по краям раны обусловлена гликопротеином фактором Виллебранда . Одновременно с адгезией наступает агрегация тромбоцитов: активированные тромбоциты присоединяются к повреждённым тканям и к друг другу, формируя агрегаты, преграждающие путь потере крови. Появляется тромбоцитарная пробка .

    Из тромбоцитов, подвергшихся адгезии и агрегации, усиленно секретируются различные биологически активные вещества (АДФ, адреналин, норадреналин и другие), которые приводят к вторичной, необратимой агрегации. Одновременно с высвобождением тромбоцитарных факторов происходит образование тромбина , который воздействует на фибриноген с образованием сети фибрина, в которой застревают отдельные эритроциты и лейкоциты – образуется так называемый тромбоцитарно-фибриновый сгусток (тромбоцитарная пробка). Благодаря контрактильному белку тромбостенину тромбоциты подтягиваются друг к другу, тромбоцитарная пробка сокращается и уплотняется, наступает её ретракция .

    Процесс свёртывания крови

    Процесс свёртывания крови представляет собой преимущественно проферментно-ферментный каскад, в котором проферменты, переходя в активное состояние, приобретают способность активировать другие факторы свёртывания крови . В самом простом виде процесс свёртывания крови может быть разделён на три фазы:

    1. фаза активации включает комплекс последовательных реакций, приводящих к образованию протромбиназы и переходу протромбина в тромбин;
    2. фаза коагуляции - образование фибрина из фибриногена;
    3. фаза ретракции - образование плотного фибринового сгустка.

    Данная схема была описана ещё в 1905 году Моравицем и до сих пор не утратила своей актуальности .

    В области детального понимания процесса свёртывания крови с 1905 года произошёл значительный прогресс. Открыты десятки новых белков и реакций, участвующих в процессе свёртывания крови, который имеет каскадный характер. Сложность этой системы обусловлена необходимостью регуляции данного процесса.

    Современное представление с позиций физиологии каскада реакций, сопровождающих свёртывание крови, представлено на рис. 2 и 3. Вследствие разрушения тканевых клеток и активации тромбоцитов высвобождаются белки фосфолипопротеины, которые вместе с факторами плазмы X a и V a , а также ионами Ca 2+ образуют ферментный комплекс, который активирует протромбин. Если процесс свёртывания начинается под действием фосфолипопротеинов, выделяемых из клеток повреждённых сосудов или соединительной ткани , речь идёт о внешней системе свёртывания крови (внешний путь активации свёртывания, или путь тканевого фактора). Основными компонентами этого пути являются 2 белка: фактор VIIа и тканевый фактор, комплекс этих 2 белков называют также комплексом внешней теназы.

    Если же инициация происходит под влиянием факторов свёртывания, присутствующих в плазме, используют термин внутренняя система свёртывания . Комплекс факторов IXа и VIIIa, формирующийся на поверхности активированных тромбоцитов, называют внутренней теназой. Таким образом, фактор X может активироваться как комплексом VIIa-TF (внешняя теназа), так и комплексом IXa-VIIIa (внутренняя теназа). Внешняя и внутренняя системы свёртывания крови дополняют друг друга .

    В процессе адгезии форма тромбоцитов меняется - они становятся округлыми клетками с шиповидными отростками. Под влиянием АДФ (частично выделяется из повреждённых клеток) и адреналина способность тромбоцитов к агрегации повышается. При этом из них выделяются серотонин , катехоламины и ряд других веществ. Под их влиянием происходит сужение просвета повреждённых сосудов, возникает функциональная ишемия . В конечном итоге сосуды перекрываются массой тромбоцитов, прилипших к краям коллагеновых волокон по краям раны .

    На этой стадии гемостаза под действием тканевого тромбопластина образуется тромбин . Именно он инициирует необратимую агрегацию тромбоцитов. Реагируя со специфическими рецепторами в мембране тромбоцитов, тромбин вызывает фосфорилирование внутриклеточных белков и высвобождение ионов Ca 2+ .

    При наличии в крови ионов кальция под действием тромбина происходит полимеризация растворимого фибриногена (см. фибрин) и образование бесструктурной сети волокон нерастворимого фибрина. Начиная с этого момента в этих нитях начинают фильтроваться форменные элементы крови, создавая дополнительную жёсткость всей системе, и через некоторое время образуя тромбоцитарно-фибриновый сгусток (физиологический тромб), который закупоривает место разрыва, с одной стороны, предотвращая потерю крови, а с другой - блокируя поступление в кровь внешних веществ и микроорганизмов. На свёртывание крови влияет множество условий. Например, катионы ускоряют процесс, а анионы - замедляют. Кроме того, существуют вещества как полностью блокирующие свёртывание крови (гепарин , гирудин и другие), так и активирующие его (яд гюрзы, феракрил).

    Врождённые нарушения системы свёртывания крови называют гемофилией .

    Методы диагностики свёртывания крови

    Все многообразие клинических тестов свёртывающей системы крови можно разделить на две группы :

    • глобальные (интегральные, общие) тесты;
    • «локальные» (специфические) тесты.

    Глобальные тесты характеризуют результат работы всего каскада свёртывания. Они подходят для диагностики общего состояния свёртывающей системы крови и выраженности патологий, с одновременным учётом всех привходящих факторов влияний. Глобальные методы играют ключевую роль на первой стадии диагностики: они дают интегральную картину происходящих изменений в свёртывающей системе и позволяют предсказывать тенденцию к гипер- или гипокоагуляции в целом. «Локальные» тесты характеризуют результат работы отдельных звеньев каскада свёртывающей системы крови, а также отдельных факторов свёртывания. Они незаменимы для возможного уточнения локализации патологии с точностью до фактора свёртывания. Для получения полной картины работы гемостаза у пациента врач должен иметь возможность выбирать, какой тест ему необходим.

    Глобальные тесты :

    • определение времени свёртывания цельной крови (метод Мас-Магро или Метод Моравица);
    • тест генерации тромбина (тромбиновый потенциал, эндогенный тромбиновый потенциал);

    «Локальные» тесты :

    • активированное частичное тромбопластиновое время (АЧТВ);
    • тест протромбинового времени (или протромбиновый тест, МНО, ПВ);
    • узкоспециализированные методы для выявления изменений в концентрации отдельных факторов.

    Все методы, измеряющие промежуток времени с момента добавления реагента (активатора, запускающего процесс свёртывания) до формирования фибринового сгустка в исследуемой плазме, относятся к клоттинговым методам (от англ. сlot - сгусток).

    Примеры нарушений свёртывания крови:

    См. также

    Примечания

    1. Атауллаханов Ф.И. , Зарницына В. И. , Кондратович А. Ю. , Лобанова Е. С. , Сарбаш В. И. Особый класс автоволн - автоволны с остановкой - определяет пространственную динамику свертывания крови (рус.) // УФН: журнал. - 2002. - Т. 172 , № 6 . - С. 671-690 . -

    Кровь – соединительная ткань живого организма, находящаяся в жидком состоянии. В состав крови человека входит жидкая часть, называемая плазмой, и форменные элементы, основная часть которых сформирована из эритроцитарных клеток, лейкоцитов, тромбоцитов. Появление и процесс созревания клеточных компонентов крови известны как «гемопоэз». Движение крови происходит в замкнутой системе.

    Движение крови по сосудам

    Продолжительное время наука занимается изучением механизма свертывания крови. Направление медицины, которая занимается изучает кровеносной системы и патологических процессов, возникающих в этой области, называется гематологией. Исследованием механизмов гемокоагуляции занимается раздел гематологии – гемостазиология.

    Что собой представляет система свертывания человеческой крови?

    Механизм свертывания крови, или гемокоагуляция, – сложный процесс, состоящий из нескольких последовательных фаз и отвечающий за прекращение кровотечений при нарушении целостности сосудов. Наряду с сосудисто-тромбоцитарным гемостазом и фибринолизом процесс свертывания – важнейший этап функционирования гемостаза организма.

    В результате гемокоагуляции кровь преобразуется из жидкого состояния в желеобразное вплоть до образования тромба. Подобная трансформация возможна благодаря переходу белка фибриногена, растворенного в плазме крови, в нерастворимый фибрин, который образует своеобразную сеть из нитей, задерживающих клеточные элементы крови.

    За регуляцию процесса гемокоагуляции отвечает гуморальная и нервная системы. Касаясь вопроса, какие клетки участвуют в процессе свертывания крови у человека, следует отметить, что главная роль в нем отводится тромбоцитам, хотя непосредственное участие принимают все форменные элементы. Благодаря тромбоцитам уплотняется структура образовавшегося сгустка крови, который ускоряет заживления раны посредством стягивания краев и снижает шанс заражения, что важно для здоровья животного и человека. Эффективность механизма зависит от взаимодействия 15 веществ (факторов) крови, относящихся к классу белков.


    Образование сгустка крови (тромба)

    Важно! У физически здорового человека с нормальной свертываемостью после повреждения сосудистой стенки механизм гемокоагуляции запускается практически сразу. Формирование тромба происходит в пределах 8 минут.

    О свертывающей системе крови: биохимия

    Гемокоагуляция – ферментативный процесс, происходящий с участием особого фермента – тромбина, с помощью которого совершается преобразование растворенного в плазме фибриногена в нерастворимый белок фибрин. Основоположником теории стал физиолог Александр Александрович Шмидт, который предложил ее в 1863-1864 годах. Современное, более расширенное, представление о гемокоагуляции и методы биохимического анализа основаны на первой теории о механизме свертывания, предложенной А.А. Шмидтом.

    В крови человека на постоянной основе находится небольшое количество тромбина в неактивном состоянии. Такой тромбин называется протромбином и образуется в печени. Соли кальция и тромбопластин, находящиеся в плазме крови, воздействуют на протромбин, преобразуя его в активный тромбин.

    Внимание! Тромбопластин не содержится в крови. Его появление обусловлено разрушением тромбоцитов либо нарушением целостности структуры иных клеток организма.


    Процесс гемокоагуляции

    Процесс формирования тромбопластина сложен. В нем принимают участие несколько белков крови. При отсутствии некоторых из них гемокоагуляция замедляется либо полностью нарушается, что становится опасной патологией, способной приводить к сильным потерям крови даже при малых повреждениях. Такое заболевание, относящееся к числу коагулопатий, известно под названием «гемофилия».

    Фазы свертывания крови

    Процесс гемокоагуляции представляется как проферментно-ферментный каскад, в котором проферменты, приобретая активность, способны к активации остальных . Презентация каскадной схемы свертывания человеческой крови представлена ученым-коагулологом Моравицем в 1905 году, и до нынешнего времени актуальна. Сам процесс можно кратко описать в виде трех фаз:

    • Первая фаза – наиболее сложная и называется фазой активации. После нарушения целостности сосудистой ткани в процессе активации происходит совокупность последовательных реакций. Результатом становится образование протромбиназы и преобразование протромбина в тромбин.
    • Следующая фаза известна как фаза коагуляции. На коагуляционной стадии высокомолекулярный белок фибрин образуется из фибриногена.
    • На третьей и заключительной фазе происходит формирование фибринового сгустка, обладающего плотной структурой.

    Схема свёртывания крови по Моравицу

    Несмотря на то что предложенная Моравицем схема используется до сих пор, изучение процесса гемокоагуляции получило значительное развитие и позволило сделать немалое число открытий касательно происходящих реакций. Открыты и изучены белки, участвующие в свертывании крови.

    Факторы свертывания крови

    К факторам свертывания принято относить ферменты и белки, принимающие участие в построении тромба. Находятся они в тромбоцитарных клетках, тканях и плазме крови. Общепринятые обозначения факторов свертывания крови зависят от местоположения:

    1. Римскими цифрами обозначены та часть, которая локализуется в плазме крови. Из-за местонахождения их принято именовать плазменными факторами.
    2. Активные соединения, расположенные в тромбоцитах, обозначают арабскими цифрами. Им присвоено название «тромбоцитарные факторы».

    Внимание! Плазменные факторы гемокоагуляции, вырабатываемые живым организмом, изначально находятся в неактивном состоянии, а при повреждении сосудов происходит их активация и к названию фактора добавляется буква «а».

    К плазменным факторам гемокоагуляции относятся:

    • I – белок фибриноген, синтезируется клетками печени и впоследствии преобразуется в нерастворимый фибрин под воздействием тромбина.
    • II – обозначение протромбина. Его выработка происходит в клетках печени с участием витамина K. Протромбин – неактивный вид тромбина.
    • III – тромбопластин, содержащийся в неактивном виде в тканях. Участвует в преобразовании протромбина в тромбин посредством формирования протромбиназы.
    • IV – кальций. Активно участвующее на всех этапах гемокоагуляции вещество. Не расходуется в процессе. Выступает в роли ингибитора фибринолиза.
    • V – лабильный фактор, известный как проакцелерин. Синтез происходит в клетках печени, участвует в образовании протромбиназы.
    • VI – акцелерин, является активной формой проакцелерина. Исключен из современной таблицы факторов гемокоагуляции.
    • VII – проконвертин. Создается клетками печени с использованием витамина K. Становится активным на первой фазе процедуры свертывания и не расходуется во время нее.
    • VIII – обозначение сложного гликопротеида под названием «Антигемофильный глобулин А». Точное место выработки в организме неизвестно, но предполагается, что выработка происходит в клетках печени, почках, селезенке и лейкоцитах.
    • IX – антигемофильный глобулин B или фактор Кристмаса. Вырабатывается печенью не без помощи витамина K. Продолжительное время существует в плазме и сыворотке крови.
    • X – тромботропин или фактор Стюарта-Прауэра. В неактивном виде вырабатывается печенью с участием K и способствует образованию тромбина.
    • XI – фактор Розенталя или антигемофильный фактор C. Синтез происходит в печени. Активирует фактор IX.
    • XII – фактор контакта или Хагемана. Вырабатывается в неактивном виде печенью. Запускает тромбообразование.
    • XIII – фибринстабилизирующий фактор, иначе называемый фибриназой. При участии кальция проводит стабилизацию фибрина.
    • Фактор Фитцжеральда вырабатывается печенью и производит активацию фактора XI.
    • Фактор Флетчера синтезируется в печени, преобразует кинин из кининогена, запускает VII и IX факторы.
    • Фактор Виллебранда содержится в тромбоцитах, вырабатывается в эндотелии.

    Подробно о факторах гемокоагуляции можно узнать из видео ниже:

    Различают внешний и внутренний путь свертывания крови в зависимости от того, какой механизм запускает гемокоагуляцию. В обоих случаях активация факторов начинается на поврежденных клеточных мембранах.


    Внешний путь свертывания крови

    При внешнем пути свертывания крови в роли запускающего фактора выступает тромбопластин, который попадает в кровь при травме сосудистой ткани и совместно с фактором VII оказывает энзиматическое воздействие на фактор X. Последний с участием ионов калия вступает в связь с фактором V и фосфолипидами тканей, образуя в результате протромбиназу. Путь свертывания, при котором поступление сигнала идет от тромбоцитов, называется внутренним, в этом случае активируется фактор XII. Оба механизма инициации свертывания взаимосвязаны, поэтому данное разделение условное.


    Внутренний путь свертывания крови (контактная активация)

    Норма гемокоагуляции и ее патофизиология

    У физически здорового взрослого человека процесс свертывания крови занимает от 5 до 7 минут. Большая его часть отводится на первую фазу, во время которой образовывается протромбин, используемый организмом для формирования тромба. Благодаря ему происходит закупорка разрушенной стенки сосуда, вследствие чего предотвращается сильная кровопотеря.

    Последующие фазы происходят значительно быстрее – в пределах нескольких секунд. Скорость образования тромба зависит от скорости синтеза протромбина. Время выработки последнего находится в тесной связи с наличием в организме достаточного количества витамина K, при дефиците которого есть риск возникновения сложностей в остановке кровотечения.

    Внимание! Процесс свертывания крови у детей происходит значительно быстрее. У ребенка в возрасте 10 лет на данное действие затрачивается от 3 до 5 минут. С возрастом скорость гемокоагуляции снижается.

    Гипокоагуляция

    Патологическое состояние, при котором у человека заметно снижена эффективность механизма свертывания крови, называется гипокоагуляцией. Подобное отклонение возникает из-за целого ряда причин:

    • Объемные кровопотери из-за серьезных травм. В такой ситуации вместе с кровью человек теряет огромное количество форменных клеток, различных ферментативных веществ и факторов свертывания.
    • Патологические состояния печени. В их число входит гепатит. Результатом нарушений в работе печени становится угнетение синтеза факторов свертывания.
    • В ряде случаев гипокоагуляция возникает из-за анемии либо дефицита витамина K.
    • Причина может иметь наследственный характер, например: наследственное нарушение деятельности тромбоцитарных клеток.

    При подозрениях на патологию правильным решением станет обращение к врачу, который проведет ряд исследований и лабораторных анализов для подтверждения диагноза и определит его первопричины. Схема лечения составляется индивидуально в зависимости от того, что стало фактором возникновения заболевания.

    В любом случае понадобится комплексный подход, включающий прием лекарственных препаратов и изменение рациона. В меню больного включается больше продуктов, содержащих калий, фолиевую кислоту, кальций. Решить эти вопросы поможет квалифицированный специалист в медицинском учреждении. Самолечение при подобных отклонениях неприемлемо.


    Забор материала для проведения анализа

    [ tip ]Важно! Если причина заболевания кроется в наследственности, терапия может продолжаться в течение всей жизни пациента.

    Гиперкоагуляция

    Гиперкоагуляция – противоположное состояние, при котором у пациента наблюдается повышенный показатель свертываемости, что чревато опасностью формирования тромбов. Гиперкоагуляция зачастую развивается на фоне:

    • Обезвоживания организма, вызванного отклонениями в работе почек, жидким стулом и продолжительной рвотой, ожогами.
    • Сбоями в работе печени, влекущими дефицит в выработке гормонов и ферментативных веществ. Способен повлиять цирроз и гепатит.
    • У женщин такое развитие событий обусловлено использованием оральных контрацептивов, оказывающих влияние на гормональный фон.
    • При беременности. В период вынашивания ребенка ввиду некоторых изменений физиологии в женском организме возможно повышение активности системы свертывания. Иногда процесс может выйти за пределы допустимых рамок и привести к печальным последствиям.
    • Некоторые формы злокачественных заболеваний системы кроветворения и многое другое.

    Чтобы произвести оценку патологии и назвать причину ее возникновения, понадобится несколько процедур, включающих общий анализ крови, АЧТВ (диагностика эффективности внутреннего и общего пути свертывания), коагулограмму и т.д.

    Свертывание крови - переход из жидкого состояния в желеобразный сгусток - является биологически важной защитной реакцией организма, препятствующей кровопотере.

    На месте ранения мелкого кровеносного сосуда создается кровяной сгусток - тромб, являющийся как бы пробкой, которая закупоривает сосуд и прекращает дальнейшее кровотечение. При уменьшении способности крови к свертыванию даже незначительные ранения могут вызвать смертельное кровотечение.

    Выпущенная из сосудов кровь человека начинает свертываться через 3-4 минуты, а через 5-6 минут полностью превращается в студенистый сгусток. При повреждении внутренней оболочки (интимы) кровеносных сосудов и при повышенной свертываемости крови может происходить свертывание крови и внутри кровеносных сосудов в целом организме. В этом случае тромб образуется внутри сосуда.

    В основе свертывания крови лежит изменение физико-химического состояния содержащегося в плазме белка - фибриногена. Последний переходит из растворимой формы в нерастворимую, превращаясь в фибрин и образуя сгусток.

    Фибрин выпадает в виде длинных тонких нитей, образуя сети, в петлях которых задерживаются форменные элементы. Если же выпускаемую из сосуда кровь взбивать метелочкой, то на метелочке остается большая часть образующегося фибрина. Хорошо отмытый от эритроцитов фибрин имеет белый цвет и волокнистое строение.

    Кровь, из которой таким образом удален фибрин, называют дефибринированной. Она состоит из форменных элементов и кровяной сыворотки. Следовательно, сыворотка крови отличается по своему составу от плазмы отсутствием фибриногена.

    Сыворотку можно отделить от кровяного сгустка, если оставить на некоторое время пробирку со свернувшейся кровью. При этом сгусток крови в пробирке уплотняется, стягивается и из него отжимается некоторое количество сыворотки.

    Рис. 2. Схема свертывания крови.

    Свертываться способна не только цельная кровь, но и плазма. Если отделить центрифугированием плазму от форменных элементов на холоду, который препятствует свертыванию крови, а затем плазму согреть до 20-35°, то она быстро свернется.

    Для объяснения механизма свертывания крови был предложен ряд теорий. В настоящее время общим признанием пользуется ферментативная теория свертывания крови, основы которой заложены почти столетие назад А. Шмидтом.

    Согласно этой теории, конечным звеном свертывания является переход растворенного в плазме фибриногена в нерастворимый фибрин под влиянием фермента тромбина (рис. 2, стадия III).

    Тромбина в циркулирующей крови нет. Он образуется из белка плазмы крови - протромбина, синтезируемого печенью. Для образования тромбина необходимо взаимодействие протромбина с тромбопластином, которое должно происходить в присутствии ионов кальция (рис. 2, стадия II).

    Тромбопластина в циркулирующей крови также нет. Он образуется при разрушении кровяных пластинок (кровяной тромбопластин) или при повреждении тканей (тканевой тромбопластин).

    Образование кровяного тромбопластина начинается с разрушения кровяных пластинок и взаимодействия выделяющихся при этом веществ с имеющимся в плазме крови глобулином - фактором V (другое его название глобулин-акцелератор) и с другим глобулином плазмы крови - так называемым антигемофилическим глобулином (другое его название тромбопластиноген), а также еще с одним веществом плазмы крови - так называемым плазменным компонентом тромбопластина (другое его название фактор Кристмаса). Кроме того, для образования кровяного тромбопластина необходимо также присутствие ионов кальция (см. рис. 2, стадия I, слева).

    Образование тканевого тромбопластина происходит при взаимодействии веществ, выделяющихся из разрушенных клеток тканей, с уже упомянутым глобулином плазмы крови - фактором V, а также с глобулином плазмы крови - фактором VII (другое его название проконвертин) и тоже обязательно в присутствии ионов кальция (рис. 2, стадия I, справа). После возникновения тромбопластина быстро начинается процесс свертывания крови.

    Приведенная схема является далеко не полной, так как в действительности в процессе свертывания крови принимают участие значительно больше разных веществ.

    При отсутствии в крови упомянутого выше антигемофилического глобулина, принимающего участие в образовании тромбопластина, возникает заболевание - гемофилия, характеризующееся резко пониженной свертываемостью крови. При гемофилии даже небольшое ранение может привести к опасной кровопотере.

    Разработаны химические методы извлечения из плазмы тромбина и получения его в больших количествах (Б. А. Кудряшов). Этот препарат значительно ускоряет свертывание крови. Так, оксалатная кровь, в которой тромбин не образуется вследствие осаждения кальция, после прибавления тромбина свертывается в пробирке в течение 2-3 секунд. Если при ранении органа (например, печени, селезенки, мозга) кровотечение нельзя остановить перевязкой сосудов, то накладывание на их поверхность марли, смоченной раствором тромбина, быстро прекращает кровотечение.

    После перехода фибриногена в фибрин образовавшийся сгусток уплотняется, стягивается, иначе говоря, происходит его ретракция. Этот процесс совершается под влиянием вещества, называемого ретрактозимом, освобождающегося при распаде кровяных пластинок. В экспериментах на кроликах показано, что при резком уменьшении количества кровяных пластинок свертывание крови может произойти, но уплотнения сгустка не наступает, и он остается рыхлым, не обеспечивая хорошего закрытия поврежденного кровеносного сосуда.

    Свертываемость крови изменяется под влиянием нервной системы. Свертывание ускоряется при болевых раздражениях. Повышение свертываемости крови при этом препятствует кровопотере. При раздражении верхнего шейного симпатического узла время свертывания крови укорачивается, а при удалении его - удлиняется.

    Свертывание крови может также изменяться условнорефлекторно. Так, если какой-либо сигнал многократно сочетается с болевым раздражением, то затем при действии только одного сигнала, который прежде не оказывал никакого влияния на свертывание крови, этот процесс ускоряется. Можно думать, что при раздражении нервной системы в организме образуются какие-то вещества, ускоряющие свертывание крови. Известно, например, что адреналин, выделение которого из надпочечников стимулируется нервной системой и увеличивается при болевых раздражениях и эмоциональных состояниях, повышает свертываемость крови. Одновременно с этим адреналин суживает артерии и артериолы и тем способствует также уменьшению кровотечения при ранении кровеносных сосудов. Приспособительное значение этих фактов ясно.

    Ряд физических факторов и химических соединений тормозит свертывание крови. В связи с этим следует в первую очередь отметить действие холода, который значительно замедляет процесс свертывания крови.

    Свертывание крови замедляется также, если кровь поместить в стеклянный сосуд, стенки которого покрыты парафином или силиконом, после чего они не смачиваются кровью. В таком сосуде кровь может оставаться жидкой в течение нескольких часов. В этих условиях в значительной мере затрудняется разрушение кровяных пластинок и выход в кровь содержащихся в них веществ, участвующих в образовании тромбина.

    Свертыванию крови препятствуют щавелевокислые и лимоннокислые соли. При добавлении к крови лимоннокислого натрия происходит связывание ионов кальция; щавелевокислый аммоний вызывает выпадение кальция в осадок. И в том, и в другом случае становится невозможным образование тромбопластина и тромбина. Оксалаты и цитраты применяются только для предотвращения свертывания крови вне организма. Их нельзя в больших количествах вводить в организм, так как связывание кальция крови в организме вызывает тяжелые нарушения жизнедеятельности.

    Некоторые вещества, их называют антикоагулянтами, полностью устраняют возможность свертывания крови. К их числу относятся гепарин, выделяемый из ткани легких и печени, и гирудин, выделяемый из слюнных желез пиявки. Гепарин препятствует действию тромбина на фибриноген, а также угнетает активность тромбопластина. Гирудин действует угнетающе на третью стадию процесса свертывания крови, т. е. препятствует образованию фибрина.

    Имеются также антикоагулянты так называемого непрямого действия. Не влияя непосредственно на процесс свертывания крови, они угнетают образование веществ, участвующих в этом процессе. Сюда относятся полученные синтетически препараты - дикумарин, пелентан и др., блокирующие синтез в печени протромбина и фактора VII.

    В составе белков сыворотки обнаружено еще одно вещество - фибринолизин, растворяющее образовавшийся фибрин. Это вещество представляет собой фермент, находящийся в плазме крови в неактивной форме. Его предшественник профибринолизин активируется фибринокиназой, содержащейся во многих тканях тела.

    Из всего изложенного следует, что в крови имеются одновременно две системы: свертывающая и противосвертывающая. В норме они находятся в определенном равновесии, что препятствует процессам внутрисосудистого свертывания крови. Это равновесие нарушается при некоторых заболеваниях и ранениях.

    Значение физиологической противосвертывающей системы показано в опытах Б. А. Кудряшова. Если животному быстро ввести в вену достаточное количество тромбина, то наступает смерть вследствие внутрисосудистого свертывания крови. Если такую же смертельную дозу тромбина вводить в организм медленно, то животное не гибнет, но его кровь в значительной мере теряет способность к свертыванию.

    Это позволило сделать вывод, что введение тромбина вызывает в организме появление веществ, препятствующих свертыванию крови. Выделение этих веществ регулируется нервной системой. Если денервировать у крысы одну лапу и медленно вводить ей в вену тромбин, то кровь свернется только в сосудах денервированной лапы. Считают, что повышение уровня тромбина в сосудистом русле вызывает рефлекторно выделение стенкой сосуда веществ, препятствующих свертыванию. Перерезка нервов, а также воздействие наркотических веществ подавляют этот рефлекс.