Как улетают самолеты. Почему летает самолет

Если вы часто летаете или часто наблюдаете за самолетами на сервисах вроде , то наверняка задавали себе вопросы, почему самолет летит именно так, а не иначе. В чем логика? Давайте попробуем разобраться.

Почему самолет летит не по прямой, а по дуге?

Если смотреть на траекторию полета на дисплее в салоне или дома на компьютере, то она выглядит не прямой, а дугообразной, выгнутой в сторону ближайшего полюса (северного в северном полушарии, южного в южном). На самом же деле самолет на протяжении практически всего маршрута (и чем он длиннее, тем это справедливее) старается лететь именно по прямой. Просто дисплеи плоские, а Земля круглая, и проекция объемной карты на плоскую видоизменяет ее пропорции: чем ближе к полюсам, тем более изогнутой окажется «дуга». Проверить это очень просто: возьмите глобус и натяните по его поверхности нитку между двумя городами. Это и будет кратчайший маршрут. Если же теперь перенести линию нитки на бумагу, у вас получится дуга.

То есть, самолет всегда летит по прямой?

Самолет летит не как ему заблагорассудится, а по воздушным трассам, которые прокладываются, конечно, таким образом, чтобы минимизировать расстояние. Трассы состоят из отрезков между контрольными точками: в их качестве могут использоваться как радиомаяки, так и просто координаты на карте, которым присвоены пятибуквенные обозначения, чаще всего легко произносимые и поэтому запоминающиеся. Вернее, произносить их нужно побуквенно, но, согласитесь, запомнить сочетания вроде DOPIK или OKUDI проще, чем GRDFT и UOIUA.

При прокладке машрута для каждого конкретного полета используются различные параметры, в том числе тип самого самолета. Так, например, для двухдвигательных самолетов (а они активно вытесняют трех- и четырехдвигательные) действуют нормы ETOPS (Extended range twin engine operational performance standards), которые регламентируют планирование маршрута таким образом, чтобы самолет, пересекая океаны, пустыни или полюса, находился при этом в пределах определенного времени полета до ближайшего аэродрома, способного принять данный тип ВС. Благодаря этому при отказе одного из двигателей он сможет гарантированно дотянуть до места совершения аварийной посадки. Разные самолеты и авиакомпании сертифицированы на разное время полета, оно может составлять 60, 120 и даже 180 и в редких случаях 240 (!) минут. Между тем планируется сертифицировать Airbus A350XWB на 350 минут, а Boeing-787 на 330; это позволит отказаться от четырехдвигательных самолетов даже на маршрутах вроде Сидней-Сантьяго (это самый протяженный в мире коммерческий маршрут, проходящий над морем).

По какому принципу самолеты движутся в районе аэропорта?

Во-первых, все зависит от того, с какой полосы в данный момент происходят взлеты в аэропорту вылета и на какую садятся в аэропорту прибытия. Если вариантов несколько, то для каждого из них существует по несколько схем выхода и захода: если объяснять на пальцах, то каждую из точек схемы самолет должен проследовать на определенной высоте на определенной (в пределах ограничений) скорости. Выбор полосы зависит от текущей загрузки аэропорта, а также, в первую очередь, ветра. Дело в том, что и при взлете, и при посадке ветер должен быть встречным (или дуть сбоку, но все равно спереди): если ветер дует сзади, то самолету для поддержания нужной скорости относительно воздуха придется иметь слишком большую скорость относительно земли – может и длины полосы не хватить для разбега или торможения. Поэтому в зависимости от направления ветра самолет при взлете и посадке движется или в одну сторону, или в другую, и полоса имеет два взлетных и посадочных курса, которые, будучи округлены до десятков градусов, используются для обозначения полосы. Например, если в одну сторону курс 90, то в другую будет 270, и полоса будет называться «09/27». Если же, как это часто бывает в крупных аэропортах, параллельных полос две, они обозначаются как левая и правая. Например, в Шереметьево 07L/25R и 07R/25L, соответственно, а в Пулково – 10L/28R и 10R/28L.

В некоторых аэропортах полосы работают только в одну сторону – например, в Сочи с одной стороны – горы, поэтому взлетать можно только в сторону моря и заходить на посадку только со стороны моря: при любом направлении ветра он будет дуть сзади или при взлете, или при посадке, так что пилотов гарантированно ждет небольшой экстрим.

Схемы полетов в зоне аэропорта учитывают многочисленные ограничения – например, запрет на нахождение ВС непосредственно над городами или специальными зонами: это могут быть как режимные объекты, так и банальные коттеджные поселки Рублевки, жителям которой не очень нравится шум над головой.

Почему в одну сторону самолет летит быстрее, чем в другую?

Это вопрос из разряда «холиварных» – пожалуй, больше копий сломано только вокруг задачки с самолетом, стоящим на движущейся ленте – «взлетит или не взлетит». Действительно, на восток самолет летит быстрее, чем на запад, и если из Москвы в Лос-Анджелес добираешься за 13 часов, то обратно можно за 12.

То есть, быстрее лететь с запада на восток, чем с востока на запад.

Гуманитарий думает, что Земля-то крутится, и когда летишь в одну из сторон, то точка назначения приближается, ибо планета успевает провернуться под тобой.

Если вы слышите такое объяснение, срочно дайте человеку учебник географии за шестой класс, где ему объяснят, что, во-первых, Земля вращается с запада на восток (т.е. по этой теории должно быть все наоборот), а во-вторых, атмосфера вращается вместе с Землей. Иначе можно было бы подняться в воздух на воздушном шаре и висеть на месте, ожидая проворота до того места, где нужно приземлиться: бесплатные путешествия!

Технарь пытается объяснить этого явления силой Кориолиса , которая действует на самолет в неинерциальной системе отсчета «Земля-самолет»: при движении в одну из сторон его вес становится больше, а в другую, соответственно, меньше. Вот только беда в том, что разница в весе самолета, создаваемая силой Кориолиса, весьма мала даже по сравнению с массой полезного груза на борту. Но это еще полбеды: с каких пор масса влияет на скорость? Вы же на автомобиле можете ехать 100 км/ч и один, и впятером. Разница будет только в расходе топлива.

Истинная причина того, что самолет на восток летит быстрее, чем на запад, заключается в том, что ветры на высоте нескольких километров чаще всего дуют именно с запада на восток, и так что в одну сторону ветер получается попутным, увеличивающим скорость относительно Земли, а в другую – встречным, замедляющим. Почему ветры дуют именно так – спросите Кориолиса, например. Кстати, изучение высотных струйных течений (это сильные ветра в виде относительно узких воздушных потоков в определенных зонах атмосферы) позволяет прокладывать маршруты таким образом, чтобы, попав “в струю”, максимально увеличить скорость и сэкономить топливо.

Скорость (V) передвижения у лайнеров непостоянна - на подъеме необходима одна, а в полете другая.

  1. Взлет фактически начинается с момента движения судна по полосе. Аппарат разгоняется, набирает необходимый для отрыва от полотна темп и только тогда, благодаря увеличению подъемной силы, взмывает вверх. Необходимая для отрыва V прописана в руководстве к каждой модели и общих инструкциях. Моторы в этот момент работают на полную, дают огромную нагрузку на машину, отчего процесс считается одним из самых сложных и опасных.
  2. Чтобы зафиксироваться в пространстве и занять выделенный эшелон, необходимо достичь уже другой скорости. Полет в горизонтальной плоскости возможен только в том случае, если ПС компенсирует притяжение Земли.

Показатели скорости, с которой летательный аппарат способен подняться в воздух и задержаться там на определенное время, назвать трудно. Зависят они от характеристик конкретной машины и окружающих условий. У небольшого одномоторного V логично будет ниже, чем у гигантского пассажирского судна - чем крупнее аппарат, тем быстрее ему приходится двигаться.

Для «Боинга» 747-300 это примерно 250 километров в час, если плотность воздуха составит 1,2 килограмма на кубический метр. У Cessna 172 - примерно 100. Як-40 отрывается от полотна на 180 км/ч, Ту154М - на 210. Для Ил 96 показатель в среднем достигает 250, а у Airbus A380 - 268.

Из независимых от модели аппарата условий при определении числа опираются на:

  • направление и силу ветра - встречный помогает, подталкивая нос вверх
  • наличие осадков и влажность воздуха - могут осложнять или способствовать разгону
  • человеческий фактор - после оценки всех параметров решение принимает пилот

Скорость, характерную для эшелона, в технических характеристиках обозначают как «крейсерская» - это 80% от максимальных возможностей машины

Скорость на самом эшелоне также зависит непосредственно от модели судна. В технических характеристиках ее обозначают как «крейсерская» - это 80% от максимальных возможностей машины. Первый пассажирский «Илья Муромец» разгонялся всего до 105 километров в час. Сейчас же число среднем в 7 раз больше.

Если летите на Airbus A220, показатель находится на уровне 870 км/ч. А310 передвигается обычно со скоростью 860 километров в час, А320 - 840, А330 - 871, А340-500 - 881, А350 - 903, а гигант А380 - 900. У «Боингов» примерно так же. Boeing 717 летает на крейсерской в 810 километров в час. Массовый 737 - на 817-852 в зависимости от поколения, дальнемагистральный 747 - 950, 757 - на 850 км/ч, первый трансатлантический 767 - 851, Triple Seven - 905, а реактивный пассажирский 787 - 902. По слухам, компания занимается разработкой лайнера для гражданской авиации, который будет доставлять людей из одной точки в другую на V=5000. Но пока в топ самых быстрых в мире входят исключительно военные:

  • американский сверхзвуковой F-4 Phantom II пусть и уступил место более современным, но все еще входит в десятку с показателем в 2370 километров в час
  • одномоторный истребитель Convair F-106 Delta Dart с 2450 км/ч
  • боевой МиГ-31 - 2993
  • экспериментальный Е-152, чья конструкция легла в основу МиГ-25 - 3030
  • прототип XB-70 Valkyrie - 3 308
  • исследовательский Bell X-2 Starbuster - 3 370
  • МиГ-25 способен достичь 3492, но остановиться на этой отметке и не повредить двигатель невозможно
  • SR-71 Blackbird - 3540
  • мировой лидер X-15 с ракетным двигателем - 7 274

Возможно, и гражданские суда когда-нибудь смогут достигнуть этих показателей. Но точно не ближайшее время, пока главным фактором в вопросе остается безопасность пассажиров.

4 детали авиалайнера, от которых зависят летные качества

Летающие машины отличаются от обычных очень сложными конструкциями, предусматривающими каждую мелочь. И кроме очевидных деталей, на возможности и характеристики передвижения влияют и другие части - всего собрали 4 основных.

1. Крыло. Если при отказе двигателя можно долететь до ближайшего аэродрома на втором, а при неполадках сразу в двух - приземлиться с опытом пилота, без крыла от пункта отправления не отдалишься. Не будет его - не будет необходимой подъемной силы. В единственном числе о крыле говорят не случайно. Вопреки распространенному мнению, оно у самолета одно. Этим понятием обозначают всю плоскость, расходящуюся в обе стороны от борта.

Поскольку это главная деталь, отвечающая за нахождение в воздухе, ее конструкции уделяется очень много внимания. Форму строят по точным расчетам, выверяют и испытывают. Кроме того, крыло способно выдерживать огромные нагрузки, чтобы не ставить под угрозу главное - безопасность людей.

2. Закрылки и предкрылки. Большее количество времени крыло самолета имеет обтекаемую форму, но на взлете и посадке на нем появляются дополнительные поверхности. Выпускаются закрылки и предкрылки для того, чтобы увеличить площадь и справиться с действующими на аппарат силами во время серьезных нагрузок в начале и конце пути. При приземлении тормозят лайнер, не позволяют ему упасть слишком быстро, а на подъеме помогают удержаться в воздухе.

3. Спойлеры. Появляются на верхней части крыла в моменты, когда требуется уменьшить ПС. Играют роль своеобразного тормоза. Эта и детали из предыдущего пункта представляют собой механизацию, которой пилоты управляют вручную.

4. Двигатель. Винтовые тянут машину за собой, а реактивные «толкают» вперед.

Пусть еще в начале прошлого века в идею создать летающий транспорт мало кто верил, в наши дни самолеты ни у кого не вызывают удивления. Хотя в принципах их передвижения разбираются единицы - конструкции аппаратов, физика полетов кажутся слишком сложными и рождают массу заблуждений. Но рядовому пассажиру знать подобное и не обязательно. Главное, запомнить, что возможности каждой модели лайнеров просчитаны, и повторить судьбу Икара возможно лишь в редких случаях.

Почему летают птицы?

Крыло птицы устроено так, что создает силу, противодействующую силе тяжести. Ведь птичье крыло не плоское, как доска, а выгнутое . Это значит, что струя воздуха, огибающая крыло, должна пройти по верхней стороне более длинный путь, чем по вогнутой нижней. Чтобы оба воздушных потока достигли оконечности крыла одновременно, воздушный поток над крылом должен двигаться быстрее, чем под крылом. Поэтому скорость течения воздуха над крылом увеличивается, а давление уменьшается.

Разность давлений под крылом и над ним создает подъемную силу, направленную вверх и противодействующую силе тяжести.

Для кого-то актуально сейчас, для кого-то после - купить дешевый авиабилет онлайн. Это можно здесь! (Жмите на картинку!)

Зайдя на сайт, задайте направление, дату вылета (прилета), задайте количество билетов и вам компьютер автоматически выдаст таблицу с рейсами на данное число и на ближайшие рейсы, варианты, их стоимость.
Бронировать билет нужно, при возможности, как можно ранее и выкупать быстрее, пока действует бронь. Иначе, дешевые билеты "уплывут". Все подробности, узнать популярные направления с Украины, заказать авиа и ЖД билеты из любой точки в любую точку можно, зайдя по указанной картинке - на сайте по адресу http://711.ua/cheap-flights/.

Самолеты - очень сложные устройства, порой пугающие своей сложностью обывателей, людей, не знакомых с аэродинамикой.

Масса современных воздушных лайнеров может достигать 400 тонн, но они спокойно держатся в воздухе, быстро перемещаются и могут пересекать огромные расстояния.

Почему самолет летает?

Потому что у него, как и у птицы, есть крыло!

Если откажет двигатель - ничего страшного, самолет долетит на втором. Если отказали оба двигателя - история знает случаи, что и в таких обстоятельствах садились на посадку. Шасси? Ничего не мешает самолету сесть на брюхо, при соблюдении определенных мер пожарной безопасности он даже не загорится. Но самолет никогда не сможет лететь без крыла. Потому что именно оно создает подъемную силу.

Самолеты непрерывно "наезжают" на воздух своими крыльями, установленными под небольшим углом к вектору скорости воздушного потока. Этот угол в аэродинамике называется "угол атаки". "Угол атаки" - это угол наклона крыла к невидимому и абстрактному "вектору скорости потока". (см. рис 1)

Наука гласит, что самолет летает потому, что на нижней поверхности крыла создается зона повышенного давления, благодаря чему на крыле возникает аэродинамическая сила, направленная перпендикулярно крылу вверх. Для удобства понимания процесса полета, эту силу раскладывают по правилам векторной алгебры на две составляющие: силу аэродинамического сопротивления Х

(она направлена вдоль воздушного потока) и подъемную силу Y (перпендикулярную вектору скорости воздуха). (см. рис 2)

При создании самолета крылу уделяется огромное внимание, потому что именно от него будет зависеть безопасность выполнения полетов. Глядя в иллюминатор, пассажир замечает, что оно гнется и вот-вот сломается. Не бойтесь, оно выдерживает просто колоссальные нагрузки.

В полете и на земле у самолета крыло "чистое", оно имеет минимальное сопротивление воздуху и достаточную подъемную силу, чтобы удержать самолет на высоте, летящим на огромной скорости.

Но когда приходит время взлета или посадки, самолету нужно лететь как можно медленнее, чтобы с одной стороны не исчезла подъемная сила, а с другой колеса выдержали касание земли. Для этого площадь крыла увеличивается: выпускаются закрылки (плоскости в задней части) и предкрылки (в передней части крыла).

Если нужно еще уменьшить скорость, то в верхней части крыла выпускаются спойлеры, которые играют роль воздушного тормоза и уменьшают подъемную силу.

Самолет становится похож на ощетиневшегося зверя, медленно приближающегося к земле.

Все вместе: закрылки, предкрылки и спойлеры - называется механизацией крыла. Механизацию выпускают летчики вручную из кабины перед взлетом или посадкой.

На этот процесс задействуется, как правило, гидравлическая система (реже электрическая). Механизм выглядит очень интересно, и является в то же время очень надежным.

На крыле имеются рули (по-авиационному элероны), подобные корабельным (не зря самолет называется воздушным судном), которые отклоняются, наклоняя самолет в нужную сторону. Обычно они отклоняются синхронно на левой и правой стороне.

Также на крыле имеются аэронавигационные огни , которые предназначены для того, чтобы со стороны (с земли или другого самолета) было всегда видно, в какую сторону летит самолет. Дело в том, что слева всегда горит красный, а справа - зеленый. Иногда рядом с ними ставят белые "мигалки", которые очень хорошо видно ночью.

Большинство характеристик самолета напрямую зависит от крыла, его аэродинамического качества и других параметров. Внутри крыла расположены баки с топливом (от размеров крыла очень сильно зависит максимальный объем заправляемого топлива), на передней кромке ставятся электрические обогреватели, чтобы в дождь там не нарастал лед, в корневой части крепятся шасси...

Скорость самолета достигается при помощи силовой установки или турбины . За счет силовой установки, создающей силу тяги, самолет способен преодолевать сопротивление воздуха.

Самолеты летают по законам физики

В основе аэродинамики как науки заложена теорема Николая Егоровича Жуковского, выдающегося русского ученого, основателя аэродинамики, которая была сформулирована еще в 1904 году . Спустя год, в ноябре 1905 года Жуковский изложил свою теорию создания подъемной силы крыла летательного аппарата на заседании Математического общества.

Почему самолеты летают так высоко?

Высота полета современных реактивных самолетов находится в пределах от 5000 до 10000 метров над уровнем моря . Это объясняется очень просто: на такой высоте плотность воздуха намного меньше, а, следовательно, меньше и сопротивление воздуха. Самолеты летают на больших высотах, потому что при полете на высоте 10 километров самолет расходует на 80% меньше горючего, чем при полете на высоте в один километр.

Однако почему же тогда они не летают еще выше, в верхних слоях атмосферы, где плотность воздуха еще меньше?

Дело в том, что для создания необходимой тяги двигателем самолета необходим определенный минимальный запас воздуха . Поэтому у каждого самолета имеется наибольший безопасный предел высоты полета, называемый также «практический потолок». К примеру, практический потолок самолета Ту-154 составляет около 12100 метров.

Высота полета – один из важнейших авиационных параметров. От нее зависят, в частности, скорость и расход топлива. Иногда от выбора высоты зависит и безопасность полета. Так, например, пилотам приходится менять высоту при резком изменении метеоусловий, из-за густого тумана, плотной облачности, обширного грозового фронта или турбулентной зоны.

Какой должна быть высота полета

В отличие от скорости самолета (когда чем быстрее, тем лучше), высота полета должна быть оптимальной. Причем у каждого типа самолетов она своя. Никому в голову не придет сравнивать высоты, на которых летают, к примеру, спортивные, пассажирские или многоцелевые боевые самолеты. И все же и здесь есть свои рекордсмены.


Первый рекорд высоты полета равнялся… трем метрам. Именно на такую высоту впервые поднялся самолет Wright Flyer братьев Уилбура и Орвилла Райт 17 декабря 1903 года. Спустя 74 года, 31 августа 1977 года советский летчик-испытатель Александр Федотов на истребителе МиГ-25 установил мировой рекорд высоты — 37650 метров. До настоящего времени она остается максимальной высотой полета истребителя.

На какой высоте летают пассажирские самолеты

Самолеты гражданских воздушных линий по праву составляют самую большую группу современной авиации. По данным на 2015 год в мире насчитывалось 21,6 тыс. многоместных летающих аппаратов, из которых треть – 7,4 тыс. – это крупные широкофюзеляжные пассажирские лайнеры.

При определении оптимальной высоты полета (эшелона) диспетчер или командир экипажа руководствуются следующим. Как известно, чем больше высота, тем более разряжен воздух и тем легче лететь самолету – поэтому есть смысл подняться выше. Однако крыльям самолета нужна опора, а на предельно большой высоте (например, в стратосфере) ее явно недостаточно, и машина начнет «заваливаться», а двигатели глохнуть.


Вывод напрашивается сам собой: командир (а сегодня и бортовой компьютер) выбирает «золотую середину» – идеальное соотношение силы трения и подъемной силы. В результате, у каждого типа пассажирских лайнеров (с учетом метеоусловий, технических характеристик, продолжительности и направления полета) своя оптимальная высота.

Почему самолеты летают на высоте 10000 метров?

В целом, высота полета гражданских самолетов варьируется в пределах от 10 до 12 тыс. метров при полете на запад и от 9 до 11 тыс. метров – на восток. 12 тыс. метров – это максимальная высота для пассажирских самолетов, выше которой двигатели начинают «задыхаться» от нехватки кислорода. Из-за этого высота 10000 метров считается наиболее оптимальной.


На какой высоте летают истребители

Высотные критерии истребителей несколько иные, что объясняется их предназначением: в зависимости от поставленной задачи вести боевые действия приходится на различных высотах. Техническая оснащенность современных истребителей позволяет им действовать в диапазоне от нескольких десятков метров до десятков километров.

Однако запредельные высоты у истребителей нынче «не в моде». И этому есть свое объяснение. Современные средства ПВО и ракеты истребителей класса «воздух-воздух» способны уничтожать цели на любых высотах. Поэтому главная проблема для истребителя – раньше обнаружить и уничтожить противника, а самому остаться незамеченным. Оптимальная высота полета истребителя 5-го поколения (практический потолок) – 20000 метров.

Как летают самолеты?

Самолет относится к летательным аппаратам тяжелее воздуха. Это означает, что для его полета нужны определенные условия, сочетание точно рассчитанных факторов. Полет самолета – это результат действия подъемной силы, которая возникает при движении потоков воздуха навстречу крылу. Оно повернуто под точно рассчитанным углом и имеет аэродинамическую форму, благодаря которой при определенной скорости начинает стремиться вверх, как говорят летчики – “становится на воздух”.

Разгоняют самолет и поддерживают его скорость двигатели. Реактивные толкают самолет вперед за счет сгорания керосина и потока газов, вырывающихся из сопла с большой силой. Винтовые двигатели “тянут” самолет за собой.

Крыло современных самолетов является статичной конструкцией и само по себе не может самостоятельно создавать подъемную силу. Возможность поднять многотонную машину в воздух возникает только после поступательного движения (разгона) летательного аппарата с помощью силовой установки. В этом случае крыло, поставленное под острым углом к направлению воздушного потока, создает различное давление: над железной пластиной оно будет меньше, а снизу изделия – больше. Именно разность давлений приводит к возникновению аэродинамической силы, способствующей набору высоты.

Материалы по теме:

Почему за самолетом остается след, а иногда нет?

Подъемная сила самолетов состоит из следующих факторов:

  1. Угла атаки
  2. Несимметричного профиля крыла

Наклон металлической пластины (крыла) к воздушному потоку принято называть углом атаки. Обычно при подъеме самолета упомянутое значение не превышает 3-5°, чего достаточно для взлета большинства моделей самолетов. Дело в том, что конструкция крыльев с момента создания первого летательного аппарата претерпела серьезные изменения и сегодня представляет собой несимметричный профиль с более выпуклым верхним листом металла. Нижний лист изделия характеризуется ровной поверхностью для практически беспрепятственного прохождения воздушных потоков.

Схематично процесс образования подъемной силы выглядит так: верхним струйкам воздуха нужно пройти больший путь (из-за выпуклой формы крыла), чем нижним, при этом количество воздуха за пластиной должно остаться одинаковым. В результате верхние струйки будут двигаться быстрее, создавая согласно уравнению Бернулли область пониженного давления. Непосредственно различие в давлении над и под крылом в купе с работой двигателей помогает самолету набрать требуемую высоту. Следует помнить, что значение угла атаки не должно превышать критической отметки, иначе подъемная сила упадет.

Крыла и двигателей недостаточно для управляемого, безопасного и комфортного полета. Самолетом нужно управлять, при этом точность управления более всего нужна во время посадки. Летчики называют посадку управляемым падением – скорость самолета снижается так, что он начинает терять высоту. При определенной скорости это падение может быть очень плавным, приводящим к мягкому касанию колесами шасси полосы.

Материалы по теме:

Почему в авиации используют заклепки?

Управление самолетом совершенно не похоже на управление автомобилем. Штурвал пилота предназначен для отклонения вверх и вниз и создания крена. “На себя” – это набор высоты. “От себя” – это снижение, пикирование. Для того, чтобы повернуть, изменить курс, нужно нажать на одну из педалей и штурвалом наклонить самолет в сторону поворота… Кстати, на языке пилотов это называется “разворот” или “вираж”.

Для разворота и стабилизации полета в хвосте самолета расположен вертикальный киль. А находящиеся под ним и над ним небольшие “крылья” – это горизонтальные стабилизаторы, которые не позволяют огромной машине бесконтрольно подниматься и опускаться. На стабилизаторах для управления имеются подвижные плоскости – рули высоты.

Для управления двигателями между креслами пилотов находятся рычаги – при взлете они переводятся полностью вперед, на максимальную тягу, это взлетный режим, необходимый для набора взлетной скорости. При посадке рычаги отводят полностью назад – в режим минимальной тяги.

Многие пассажиры с интересом смотрят, как перед посадкой задняя часть огромного крыла вдруг опускается вниз. Это закрылки, “механизация” крыла, которая выполняет несколько задач. При снижении полностью выпущенная механизация тормозит самолет, чтобы не дать ему слишком разогнаться. При посадке, когда скорость очень невелика, закрылки создают дополнительную подъемную силу для плавной потери высоты. При взлете они помогают основному крылу удерживать машину в воздухе.