Телескопы рефлекторные: описание, устройство, история создания. Школьная энциклопедия Что используется в качестве объекта телескопа рефлектора

Астрономы-любители при наблюдениях используют в основном те­лескопы двух традиционных типов. Это телескопы - рефракторы , в которых для построения изображения применяются линзы и телескопы — рефлекторы , где для этих целей служит зеркало.
Иногда для построения изображения используют катадиоптрические системы , представляющие собой комбинации не­скольких линз и зеркал (зеркально-линзовый телескоп ).

Когда мы думаем о наблюдении звездного неба, то представляем что-то в этом роде. Реальность, сразу говорю, отличается от фотографии

Основной частью любого телескопа, которая строит изображение, является объектив . От его характеристик - апер­туры D, фокусного расстояния фокального отношения f/D - зависит диапазон наблюдений, которые позволяет проводить данный теле­скоп.

Разумеется, телескопы с широкой апертурой (с большим диа­метром объектива) предпочтительней, так как они имеют большую собирающую свет поверхность, обладают высокой разрешающей способностью и обеспечивают значительное увеличение. Однако телескопы с большой апертурой, к какому бы типу они не относи­лись, более дороги и громоздки.

Собирающая и разрешающая способность телескопов

Самой важной характеристикой как телескопа, так и бинокля является апертура (D) - диаметр объектива .

Апертура определяет размеры со­бирающей поверхности, площадь которой пропорциональна квад­рату диаметра. Чем больше собирающая поверхность прибора, тем более слабый объект он позволяет наблюдать. Таким образом, от квадрата диаметра объектива зависит предельная звездная величина объекта, который можно наблюдать в данный телескоп.

Следующая важная характеристика телескопа - разрешающая способность , т. е. спо­собность различать мельчайшие образования на дисках планет или двойные звезды.

Если диаметр объектива измерять в миллиметрах, то разрешающая способность, выраженная в секундах дуги, опреде­ляется величиной 138/D.

Для длиннофокусных объективов с фокаль­ным отношением более f/12* разрешающая способность несколько выше и определяется по формуле 116/D.

Несколько меньшая раз­решающая способность рефлекторов и катадиоптрических телескопов по сравнению с телескопами-рефракторами при том же диаметре объектива частично обусловлена экранировкой центральной части светового пучка, прошедшего через объектив. Качество изображения, особенно у телескопов-рефлекторов, может также сильно постра­дать из-за потоков воздуха, возникающих в трубе телескопа.

Телескопы рефракторы

Объектив телескопа-рефрактора представляет собой ахромати­ческую систему, склеенную из нескольких линз, которая собирает лучи различных длин волн в один фокус.

Обычно фокальные отношения любительских рефракторов меньше f/10 или f/12, так как более короткофокусные ахроматические объективы очень дороги. Поэтому рефракторы лучше использовать при наблюдениях, для которых требуются большие фокальные отношения, довольно большие уве­личения и ограниченное поле зрения.

Для серьезных наблюдений необходимо применять телескопы с апертурой не менее 75 мм.

Конечно, можно проводить наблюдения и в телескопы с меньшими апертурами, однако при этом следует помнить, особенно начи­нающим, что такие наблюдения сопряжены с большими трудностями; по этой причине наблюдения в хороший бинокль могут оказаться более результативными, чем в телескоп с малой апертурой.

В отличие от телескопов других типов в рефракторах отсутствуют потери, обусловленные частичной экранировкой пучка света промежуточными зеркалами, тем не менее при наблюдениях, как правило, исполь­зуются рефракторы с объективами диаметром менее 100 мм.

Реже встречаются крупные рефракторы с апертурами свыше 150 мм, так как они довольно дороги и громоздки.

Телескопы рефлекторы

Большинство любительских телескопов-рефлекторов имеет фокаль­ные отношения f/6 - f/8; по сравнению с рефракторами они удобнее при наблюдениях, для которых требуются более широкое поле зрения и меньшее увеличение.

Телескопы-рефлекторы бывают разных типов. В практике любительских наблюдений чаще всего используются рефлекторы двух типов: системы Ньютона и системы Кассегрена .

В телескопе системы Ньютона вторичное зеркало плоское, поэтому фокусное расстояние и фокальное отношение объектива постоянны. В телескопе системы Кассегрена вторичное зеркало выпуклое, что зна­чительно увеличивает общее фокусное расстояние телескопа и тем самым изменяет его эффективное фокальное отношение. По этой причине рефлекторы системы Кассегрена находят применение при наблюдениях того же типа, что и телескопы-рефракторы.

Самое большое преимущество рефлекторов - их низкая стоимость. При той же апертуре они значительно дешевле телескопов любого другого типа. Кроме того, нужное зеркало для объектива рефлектора можно изготовить собственными силами или в крайнем случае - прос­то купить, а трубу такого телескопа нетрудно собрать в домашних условиях.

Практически все любительские телескопы с большой собирающей поверхностью (диа­метры объектива свыше 200 мм) являются рефлекторами. Минималь­ный диаметр объектива рефлекторов, которые обычно используют для общих наблюдений, составляет около 150 мм; такой рефлектор стоит не дороже рефрактора с объективом диаметром 75 мм. По­скольку рефлектор имеет большую собирающую поверхность, в него можно наблюдать более слабые объекты, однако он не столь ком­пактен, как рефрактор.

Рефлекторы меньших размеров, имеющие малые фокальные отношения, по своим характеристикам занимают промежуточное положение между биноклями и обычными рефлек­торами; к тому же они достаточно компактны.

Однако у рефлекторов есть и недостатки. Наиболее существенные из них - необходимость время от времени обновлять отражающие, покрытия и юстировать оптические элементы. При отсутствии до­рогостоящего оптического стекла, герметически закрывающего трубу рефлектора, приходится укрывать каждое зеркало телескопа крышкой или чехлом, чтобы воспрепятствовать проникновению пыли.

При наблюдениях окуляр в телескопе системы Ньютона может оказаться в неудобном положении; чтобы избежать этого, следует предусмотреть возможность вращения трубы телескопа.

Если труба рефлектора не закрыта герметически оптическим ок­ном, то холодный наружный воздух, проникая в нее, создает там воздушные потоки, ухудшающие изображение. Весьма эффективным средством борьбы с этим недостатком может быть использование больших теплоизоляционных труб, но чаще для этой цели применяют «трубы» скелетной конструкции.

К сожалению, в последнем случае возникают другие проблемы, связанные с потоками теплого воздуха от самого наблюдателя (так что при наблюдениях старайтесь одевать больше теплоизолирующей одежды!). Кроме того, при этом увели­чивается выпадение росы на оптические элементы. Поэтому большое значение приобретает правильная конструкция самой обсерватории.

Катадиоптрическая система телескопов (зеркально-линзовый телескоп )

Среди катадиоптрических телескопов наибольшее применение нахо­дят телескопы система Максутова и система Шмидта-Кассегрена .

При данном фокусном расстоянии они более портативны и удобны при наблюде­ниях, особенно в соединении с разнообразными устройствами, обеспе­чивающими слежение за сложным движением небесных тел. Естест­венно, такие телескопы значительно дороже как рефракторов, так и рефлекторов того же размера.

Катадиоптрические телескопы имеют большие фокальные отношения: f/10, f/12 и даже f/15, поэтому их можно использовать для выполнения тех же задач, которым служат рефракторы и рефлекторы системы Кассегрена.

Как проверить телескоп перед покупкой

Ряд исследований качества оптики телескопа можно провести само­стоятельно, но при этом следует помнить, что идеальных оптических систем не существует. Любая оптическая система искажает изображения, такие искажения называют аберрациями .

При изготовлении телескопа аберрации стремятся свести к минимуму. Конкретные требования к величине допустимых аберраций зависят от характера исследований, для которых предназначен данный телескоп. Например, при изучении планет, и фотографировании небесных объектов требования к величине допустимых аберраций более высо­кие, чем при наблюдениях .

Хроматическая аберрация , характерная в той или иной мере для , рефракторов и телескопов некоторых других типов, выра­жается в окрашивании изображения небесных тел. Она особенно заметна на резких границах между светлыми и темными областями, например на лимбах Луны, и т. д. Телескопы-рефлекторы не создают аберрации такого типа.

Наличие дисторсии (искажения в изображении взаимного распо­ложения звезд) можно проверить, наблюдая изображение прямой линии или прямоугольной кладки кирпича в стене дома.

Проверьте, как ваш телескоп строит изображение точечного ис­точника. По возможности это лучше делать в ночное время, исследуя изображение звезд. Такие проверки можно проводить и днем, на­блюдая «искусственные звезды» (солнечный свет, отраженный дале­ким воздушным шаром) или любой другой точечный источник света.

Да, хотя это звучит банально, но все же не лишним будет напомнить — телескоп это точный и очень чувствительный прибор. Тщательно проверьте его перед покупкой, разочарование от некачественной «игрушки» отобьет всю охоту заниматься изучением звездного неба

В хорошем телескопе изображение звезды находится точно в фокусе и имеет форму идеально круглого дифракционного диска. Эти изобра­жения должны иметь форму идеального круга не только в фокусе, но и вне его. Их вытянутость свидетельствует о наличии астигматизма или деформации оптических элементов телескопа, которая может возникнуть из-за неправильного крепления.

На кривизну поля указывает расфокусировка изображения звезды при перемещении ее от центра к краю поля зрения телескопа. Кривизна поля присуща большинству телескопов, но этот дефект в основном сказывается при фотографических наблюдениях. Другая аберрация, кома, проявляется в вытя­гивании изображения звезды (она принимает форму кометы) на краю поля зрения. Кома также присуща большинству телескопов, но более заметна в рефлекторах, чем в рефракторах.

Проверки механических узлов телескопов и их монтировка в основном имеют общий характер. Для хорошей работы необходимо добиться жесткости конструкции как самой трубы телескопа, так и его монтировки. Лучше всего это достигается твердым креплением осей телескопа - каждая закрепляется на двух достаточно разнесенных опорах.

Вращение вокруг осей должно быть плавным, а на эквато­риальных установках обе оси следует снабдить стопорными винтами. Все приводы, фокусирующая оправа окуляров и другие механизмы регулировки телескопа должны действовать без люфтов.

В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения . В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом . Оптические системы зеркальных телескопов разделяются по типам используемых объективов.

Система Ньютона

Система Кассегрена

Система Ричи - Кретьена

Система Ричи - Кретьена является усовершенствованием системы Кассегрена. Главное зеркало тут не параболическое, а гиперболическое. Поле зрения этой системы - около 4° .

Система Гершеля (Ломоносова)

Ещё в 1616 году Н. Цукки предложил заменить линзу вогнутым зеркалом, наклонённым к оптической оси телескопа. Подобный телескоп-рефлектор был сконструирован Уильямом Гершелем в 1772 году (на 10 лет раньше данную оптическую схему реализовал М. В. Ломоносов). В нём первичное зеркало имеет форму внеосевого параболоида и наклонено так, что фокус находится вне главной трубы телескопа, и наблюдатель не закрывает собой поступающий свет. Недостатком такой схемы является большая кома , но при малом относительном отверстии она почти незаметна.

Основные оптические системы зеркальных телескопов

11 октября 2005 года в эксплуатацию был запущен телескоп Southern African Large Telescope в ЮАР с главным зеркалом размером 11 x 9.8 метров, состоящим из 91 одинакового шестиугольника.

13 июля 2007 года первый свет увидел телескоп Gran Telescopio Canarias на Канарских островах с диаметром зеркала 10,4 м, который является самым большим оптическим телескопом в мире по состоянию на первую половину 2009 года .

В современных составных рефлекторах с середины 1990-х годов используются деформируемые зеркала (англ. ) и адаптивная оптика , что позволяет компенсировать атмосферные искажения. Это стало прорывом в телескопостроении и позволило значительно повысить качество работы наземных телескопов.

См. также

Примечания

Литература

  • Чикин А. А. «Отражательные телескопы» , Петроград, 1915
  • Навашин М. С. Телескоп астронома-любителя. - М .: Наука, 1979.
  • Сикорук Л. Л. Телескопы для любителей астрономии.
  • Максутов Д. Д. Астрономическая оптика. - М.-Л.: Наука, 1979.

Ссылки

  • Анимационные оптические схемы: Максутова-Касегрена, Максутова - Ньютона, Грегори-Максутова

Wikimedia Foundation . 2010 .

Что такое рефлектор?

В широком смысле слова рефлектор - это любой телескоп , объектив которого состоит только из зеркал. Это и объективы по схеме Ньютона (вогнутое параболическое главное зеркало и вспомогательное диагональное), и Кассегрена (главное - вогнутое, экранирующее меньшее по размеру - выпуклое), и Ричи-Кретьена (апланатический - свободный от комы - Кассегрен), и довольно редкого Грегори (вогнутое и главное, и экранирующее вспомогательное), и некоторые еще менее распространенные двух-, трех- и четырехзеркальные.

Однако в узком смысле это название обычно употребляют по отношению только к Ньютонам.

Какова схема Ньютона?

Классическая схема Ньютона это - вогнутое параболическое зеркало (главное зеркало - ГЗ), которое отражает лучи от бесконечно удаленного объекта в фокальную плоскость на расстоянии равном половине радиуса кривизны при вершине зеркала. Для того, чтобы вывести изображение из падающего параллельного пучка используется вспомогательное плоское зеркало повернутое на 45 градусов к оси труба, оно отражает изображение на 90 градусов. Из-за этих 45 градусов оно назвается диагональным (ДЗ). Для того, чтобы его тень на ГЗ была круглой (это выгодно по ряду соображений) форма ДЗ обычно делается эллиптической с отношением большой оси к малой равном 1.4142 (корень из двух). Размеры определяются размерами сечения светового конуса конуса в плоскости расположения ДЗ. Малая ось эллипса отражающей поверхности диагонального зеркала определяется следующим соотношением:

a (мм) = 4*S*D*(S-f"+L)/(4*S*S-D*D) , S (мм) = D*f"/(D - 2y")

S - расстояние от ГЗ до вершины светового конуса (равно фокусному расстоянию при нулевом невиньетированном поле), D (мм) - диаметр ГЗ, 2y" (мм) - диаметр невиньетированного поля зрения, f" (мм) - фокусное расстояние ГЗ, L (мм) - излом оси (расстояние от оси трубы до вынесенной в бок фокальной плоскости).

Отношение a/D - линейный коэффициент экранирования и обычно выражают в процентах. При этом геометрический центр эллипса диагоналки для сохранения симметричности виньетирования должен быть смещен с оси главного зеркала на

d (мм) = 0.25*a*D/S = D*D*(S-f"+L)/(4*S*S-D*D ), мм

в сторону от фокусера и к главному зеркалу. Внутренний размер трубы Ньютона должен быть больше диаметра ГЗ как минимум на величину примерно 2y", чтобы не виньетировались наклонные (полевые) световые пучки.

Труба телескопа Ньютона

Труба телескопа Ньютона состоит из следующих основных частей

Труба

Обеспечивает постоянство положения отдельных частей относительно друг друга, светозащиту от внешней засветки, потоков теплого воздуха от тела и дыхания наблюдателя, пыли и влаги. Труба может быть сплошной несущей или выполненной в виде фермы (возможно с легким чехлом, например, из капрона. Для уменьшения тепловых внутри трубы лучше окрашивать трубу снаружи белым цветом, а материал трубы выбирать из неметаллов. Жесткость трубы обеспечивает таже возможность ее присоединения к монтировке телескопа. Меньшая жесткость нужна для крепления в альт-азимутальной симметричной монтировке (типа Добсона) и несколько больная для крепления в экваториальной.

Главное зеркало

Создает изображение удаленных предметов в фокальной плоскости окуляра. В классическом исполнении имеет профиль параболоида вращения, но иногда при малых относительных отверстиях может быть заменено на сферическое. Парабола более подвержено технологическим ошибкам изготовления в процессе так называемой фигуризации, но зато обеспечивает высокую светосилу и минимальные аберрации на оси. Толщина зеркала должна быть такой, чтобы обеспечивать достаточную жесткость в условиях переменных весовых нагрузок, а материал - стекло, ситалл или даже плавленый кварц с высокой степенью оптической однородности и минимумом напряжений (как это обычно бывает в закаленном или витринном стекле).

Диагональное зеркало

Отбрасывает отраженный главным зеркалом свет вбок, позволяя рассматривать его фокальную плоскость без помех. Зеркало плоское (точность плоскости не менее 1/4 длины волны), имеет в идеале эллиптическую форму отражающей поверхности и скошенные под 45 градусов нерабочую цилиндрическую поверхность. Требования к материалу столь же жесткие как и у главного зеркала. На рынке аксессуаров есть предложения с 95% зеркальным и даже 99% диэлектрическим многослойным слоем отражения, но обычно алюминиевый зеркальный слой отражает порядка 88%. Размер зеркала снизу ограничен диаметром осевого пучка в точке излома оси и возможно меньшим виньетированием внеосевых пучков, а сверху требованиями минимизации экранирования (при малой оси диагоналки 30% от апертуры контраст изображения падает также как 1/4 волновая сферическая аберрация).

Как диагональное, так и главное зеркало имеют наружное зеркальное покрытие (обычно алюминиевое с защитой оксидом кварца или без) весьма чувствительное к механическим нагрузкам. Оно требует особенно бережного обращения и предохранения от царапин при чистке и мойке. Самый мелкие и незаметные царапинки на зеркальном слое приводят к уменьшению контраста изображения и потере проницания.

Оправа главного зеркала

Обеспечивает относительную (с точностью до тепловых зазоров порядка 0.5 мм на сторону) неподвижность главного зеркала по отношению к другим узлам. Лапки (реже приклеивание) предохраняют зеркало от выпадения из оправы. Зеркало обычно укладывается на три равносторонне разнесенные на опоры (диаметр окружности проходящей через опоры равен 0.4 диаметра зеркала) или на специальную систему весовой разгрузки. Оправа зеркала должна иметь возможность менять свое положение в трубе при помощи так называемых юстировочных винтов относительно трубы телескопа или неподвижной части оправы (базы) для обеспечения точной юстировки Ньютона.

Система охлаждения главного зеркала

Это или пассивная система, когда тыльная сторона зеркала максимально открыта наружному воздуху для того, чтобы как можно быстрее привести зеркало в температурное равновесие с окружающей средой, или активная вентиляция наружной и тыльной поверхности зеркала при помощи вентиляторов (обычно используются вентиляторы охлаждения системных блоков компьютеров).

Оправа вторичного зеркала

Оправа диагонального зеркала Ньютона обеспечивает, с одной стороны, точное и постоянное во времени положение диагонального зеркала относительно других элементов схемы (окуляра и главного зеркала), а с другой - возможность небольших изменения угла наклона, угла поворота относительно оси трубы и смещения вдоль ее для коллимации телескопа в процессе грубой юстировки.

"Паук" или растяжки

Обычно четырехлучевая схема подвески узла вторичного (диагонального) зеркала в трубе телескопа. Должна обеспечивать надежное фиксирование диагонального зеркала и возможность его центрировки относительно оси трубы. Иногда встречаются трехлучевые "пауки" (в отличие от четырехлучевых приводят к появлению шести дифракционных лучей вокруг изображения каждой яркой звезды). Еще более экзотичны теперь "одноногое" крепление вторичного зеркала и крепление на искривленных растяжках (последние уменьшают дифракционные лучи, до их полного исчезновения).

Фокусер

Предоставляет базу (обычно торец цилиндра и диаметр отверстия стандарта 1.25" или 2") для позиционирования и крепления окуляра с возможностью фокусировки (подгонки под зрение наблюдателя и совмещения фокальных плоскостей окуляра и главного зеркала). Обычно фокусер состоит из базы прикрепляемой к трубе (иногда с возможностью регулировки для выставления перпендикулярности), механизма фокусировки и подвижной трубки фокусера (обычно она имеет возможность перемещаться перпендикулярно оси трубы поступательно, без прокручивания). Наибольшее распространение получили реечная конструкция и фокусер Крейфорда. В любительской практике встречаются фокусеры из корпусов недорогих фотообъективов (типа Гелиос 44 и ему подобных).

Диафрагмы светозащиты

Прочие аксессуары

К трубе телескопа Ньютона обычно крепятся также оптический или коллимационный искатель, система балансировки (для того, чтобы трубы была подвешена на монтироке в состоянии безразличного равновесия), площадка для крепления фотооборудования и гида (небольшого телескопа для ручного или автоматического слежения за фотографируемым объектом). Важно иметь крышки, герметично закрывающие фокусер, передний и задний обрез трубы для ее хранения и перевозки.

А вот говорят есть какая-то "кома"?

При идеально изготовленной параболе ГЗ (что, говоря по совести, бывает только в математической модели) и идеальной юстировке центр поля зрения Ньютона полностью свободен от аберраций и разрешение ограничено только дифракцией (в том числе и от тени вторичного зеркала, которую можно особенно не принимать во внимание при коэффициенте линейного экранирования до 20%). Но Ньютон не свободен от аберраций. Чуть в сторону от оси и уже начинает проявляться кома (неизопланатизм) - аберрация связанная с неравностью увеличения разных кольцевых зон апертуры. Кома приводит к тому, что пятно рассеививания выглядит как проекция конуса - острой и самой яркой частью к центру поля зрения, тупой и округлой в сторону от центра. Размер пятна рассеивания пропорционален удалению от центра поля зрения и пропорционален квадрату диаметра апертуры. Поэтому особенно сильно проявление комы в так называемых "быстрых" (светосильных) Ньютонах на краю поля зрения. Обычно будущих владельцев Ньютона пугают малым диаметром поля зрения условно свободного от влияния комы (то есть в пределах которого кома меньше пресловутого критерия Релея). Приведем и мы эту несколько модернизированную табличку:

k d, мм ф150 ф200 ф250 ф300
2.86 0.50 4 3 2 2
3.21 0.71 5 4 3 3
3.61 1.00 6 5 4 3
4.05 1.41 8 6 5 4
4.55 2.00 10 8 6 5
5.10 2.83 13 10 8 6
5.73 4.00 16 12 10 8
6.43 5.66 20 15 12 10
7.22 8.00 25 19 15 13
8.10 11.3 32 24 19 16
9.09 16.0 40 30 24 20
10.2 22.6 51 38 30 25

k - относительное фокусное расстояние параболического зеркала телескопа,

d - диаметр поля зрения свободного от комы в мм (d = k3/45),

ф150 ф200 ф250 ф300 - колонки в который указаны угловые поля зрения условно свободные от комы, в угловых минутах соотвественно диаметру главного зеркала фХХХ в мм.

Возможно, покажутся полезными следующие формулы расчета величины комы в волновой мере:

WPV = 0.888*D/k^3

WRMS = 0.265*D/k^3

St = exp(-(1.66*D/k^3)^2)

где WPV - размах деформации волнового фронта возмущенного комой в длинах волн 0.55 мкм, k - относительный фокус зеркала, D - диаметр зеркала в мм, WRMS - среднеквадратическаая деформация волнового фронта, St - критерий Штреля.

В хорошо отъюстированных Ньютонах умеренной светосилы кома не слишком мешает наблюдениям. Она едва заметна в окуляр с ординарным полем зрения (Плёсл, Кельнер и т.п.) и сильнее в качественный широкоугольный окуляр (отсюда практический вывод - не стоит для Ньютона разоряться на очень уж дорогие широкоугольные окуляры, их перфектное качество может оказаться невостребованным - без корректора комы для детального рассматривания объект все-равно придется перемещать в центр поля зрения).

Значит только кома?

Ну, нет, конечно. Есть еще астигматизм, который хоть и проявляется в меньшей степени, чем у рефракторов, но так-же ухудшает край поля зрения. Если влияние комы линейно пропорционально удалению объекта от центра поля зрения, то астигматизм нарастает квадратично и именно он ухудшает качество изображения у края полевой диафрагмы 2" окуляров.

Вот табличка диаметров (мм) полей зрения Ньютона условно свободного от астигматизма (по критерию Реллея) в зависимости от диаметра зеркала D и относительного фокусного расстояния k = f"/D :

k\D 114 127 152 203 254 305
3.5 5.6 5.9 6.5 7.5 8.4 9.2
4 6.8 7.2 7.9 9.1 10.2 11.2
4.5 8.2 8.6 9.4 10.9 12.2 13.4
5 9.6 10.1 11.1 12.8 14.3 15.7
6 12.6 13.3 14.5 16.8 18.8 20.6
7 15.9 16.7 18.3 21.2 23.7 25.9
8 19.4 20.4 22.4 25.9 28.9 31.7
10 27.1 28.6 31.3 36.1 40.4 44.3

А всякие там Шмидт-Ньютоны?

Существуют многочисленные вариации оптической схемы Ньютона.

Ньютон со сферическим (а не параболическим) главным зеркалом. Эта схема вносит сферическую аберрацию тем большую, чем больше светосила главного зеркала. То есть пригодна только для весьма умеренных по апертуре и несветосильных инструментов. К примеру, для 150 мм диаметра сферическое зеркало с фокусом 1500 мм почти идеально замещает параболическое. См. обсуждение , в котором в частности приведена формула связывающая минимальное фокусное расстояние сферического зеркала, когда оно еще не слишком уступает параболическому f" = 1.52*D^4/3 Из этой формулы следует такая табличка минимальных фокусных расстояний при которых возможна замена парабол сферическими зеркалами:

D, мм Fmin, мм
114 840 1:7.4
130 1000 1:7.7
150 1200 1:8
200 1778 1:9
250 2394 1:9.5
300 3053 1:10

вообще же для, сферического зеркала диаметром D и относительным фокусным k = f"/D сферическую аберрацию в волновой мере можно рассчитать по формулам:

WPV = 0.888*D/k^3 - полный размах

WRMS = 0.265*D/k^3 - среднеквадратическое значение

  • Ньютон с линзовым компенсатором сферической аберрации. Это сферическое главное зеркало в сочетании с линзовый компенсатором сферической аберрации располагаемый перед фокусом в окулярном узле. Увы, качество компенсации в дешевом исполнении этой схемы невысоко, да и велика чувствительность к разъюстировкам.
  • Ньютон с корректором комы. Классический Ньютон с двух- трехлинзовым корректором комы и некоторых других полевых аберраций. В таком исполнении Ньютон становится весьма пригоден как для астрофотографических работ, так и для использования высококачественных широкоугольных окуляров. Чувствительность к разъюстировкам такая-же, как у обычного Ньютона.
  • Ньютон с призмой полного отражения вместо диагонального зеркала. Призма - не самая лучшая замена диагональному зеркалу (она вносит аберрации, имеет большее число источников погрешностей, более чувствительна к ошибкам изготовления, хуже в части экранирования и т.д.), но при небольших апертурах приемлема.
  • Шмидт-Ньютон с компенсатором в виде пластинки Шмидта. Пластинка Шмидта закрывает передний обрез трубы, что благоприятно сказывается на чистоте зеркал и уменьшении внутренних тепловых токов. Главное зеркало - сферическое. Кома примерно вдвое меньше, чем у классического Ньютона.
  • Максутов-Ньютон с афокальным компенсатором в параллельном ходе лучей в виде ахроматического мениска (расположен на переднем обрезе трубы и делает ее "закрытой"). Главное зеркало - сферическое. Кома исправлена, то есть объектив апланатичен.
  • Волосов-Ньютон с компенсатором в виде двухлинзового афокального корректора в передней части трубы (труба такми образом закрыта). Наилучшее исправление как осевых, так и полевых аберраций, позволяет достигать весьма интересных для астрофотографии светосил. См. интересное обсуждение

В чем отличие Ньютона и Добсона?

Хм,.. они жили в разное время. Да и для любителя астрономии это имена разных классов объектов. Ньютон - имя оптической схемы рефлектора, а Добсон (Доб) - имя концепции визуального любительского телескопа включающего трубу с оптической схемой Ньютона на упрощенной легкой альт-азимутальной монтировке. То есть, если кто-то говорит, что у него Ньютон. Скорее всего это означает трубу по схеме Ньютона на какой-то экваториальной монтировке (может быть с возможностью астрофотографии).

Мы немного "покопались" в вопросе возникновения телескопа, а также рассмотрели поближе телескоп-рефрактор, в том числе и на примере пары моделей. Давайте сделаем шаг вперёд и поговорим о телескопах-рефлекторах.

Главное отличие рефлектора от телескопа-рефрактора - это то, что в рефлекторе за сбор света и увеличение картинки отвечает не линза, а зеркало.

Параболическое (в основном, однако иногда может быть и сферическим) зеркало расположено в нижней части трубы телескопа. Оно собирает свет и фокусирует полученное изображение на маленьком вспомогательном (вторичном) зеркале, которое уже "направляет" картинку в окуляр. При этом наблюдатель смотрит в телескоп сбоку, да ещё и со стороны, непосредственно направленной в небо. Кого-то такое устройство может смутить, и первое время человеку, привыкшему пользоваться в основном рефрактором, придётся немного помучиться с управлением.

Самый первый рефлектор изобрёл в 1667 году сэр Исаак Ньютон, которому, видимо, надоели хроматические аберрации, присущие всем рефракторам. Однако взамен привычного хроматического эффекта Ньютон получил иные особенности изображения, сопровождающие и ныне большинство рефлекторов.

А если конкретнее, то у рефлектора Ньютона (это имя и сейчас носят телескопы такого типа) есть свои аберрации. В основном любители астрономии жалуются на так называемую "кому". Этот эффект создаёт ощущение, что центр картинки и её края расфокусированы между собой - то есть звёзды по центру выглядят как положено, точками, а по краям как кометы: размазаны, "лохматы и хвостаты".

В принципе, если вы не занимаетесь астрофотографией, эта особенность рефлекторов вас не особо потревожит: ведь рассматриваемый объект, как правило, находится в центре картинки, видимой наблюдателю, а значит, не пострадает от эффекта комы. А если вы фотограф, мечтающий начать съёмку звёздного неба, то лучше заранее озаботиться поиском специальных корректоров, занимающихся исправлением именно этой аберрации.

Кома - это далеко не единственный минус рефлекторов. К таковым ещё относятся:

  • необходимость периодически регулировать положение зеркала - этот процесс называется "юстировка";
  • чувствительность устройства к температурным перепадам - нельзя вынести телескоп зимой из дома на улицу и сразу приступить к наблюдениям, иначе картинка вас здорово разочарует;
  • приличные габариты - это обстоятельство несколько сдерживает страсть к поездкам с телескопом в рюкзаке;
  • чувствительность к непогоде - сильный ветер может вызвать "тряску" изображения;
  • низкая защищённость от пыли и прочих загрязнений - фактически прямой доступ к центральному зеркалу позволяет грязи почти беспрепятственно попадать внутрь, а мыть зеркальную поверхность нужно очень осторожно, иначе есть вероятность её повредить;
  • риск нарваться на некачественную оптику в дешёвых рефлекторах.

Однако все эти минусы не могут полностью победить существенные плюсы:

  1. Цена. Это, конечно, самая положительная характеристика рефлектора. Он прост в конструкции, а зеркало нуждается в меньшей обработке, чем каждая из линз рефрактора, что, конечно же, не могло не сказаться на стоимости именно рефлектора - и притом в лучшую для покупателя сторону. Фактически за одну и ту же цену можно найти рефрактор и рефлектор, существенно различающиеся по показателю апертуры (выигрывает опять же рефлектор). Напомню: апертура - это диаметр главной линзы (у рефрактора) или же главного зеркала (у рефлектора). А как уже говорилось ранее, бОльшая апертура всегда лучше. Ведь именно от этой характеристики зависят и разрешение, и контрастность, и максимально различимая звёздная величина. А если ещё проще - чем больше апертура, тем качественнее будет картинка.
  2. Рефлектор можно установить на самый лёгкий тип монтировки, которую реально сделать даже самостоятельно: монтировка Добсона наиболее компактна с точки зрения габаритов, а кроме того, делается из дерева, ДСП или фанеры. Понятно, что в весовой категории эти материалы выигрывают у металла.
  3. Отличные показатели (как правило) по параметру светосилы - такой тип телескопов, особенно в сочетании с экваториальной монтировкой, весьма хорош в астрофотографии.
  4. Если оптика качественная, то изображение в центральной своей части будет практически лишено каких-либо аберраций - и таким показателем не может похвастать ни один рефрактор.
  5. Отлично подходит для наблюдений объектов далёкого космоса.

Однако давайте уже рассмотрим какую-нибудь подходящую модель.

Для примера возьмём телескоп Celestron PowerSeeker 127 EQ (7500 руб.).

Вполне бюджетная модель с отличной апертурой на 127 мм. Если брать 7500 руб. (ориентировочная стоимость) за верхнюю денежную "планку" для приобретения телескопа, то можно найти рефрактор с диаметром линзы максимум 70 мм. А как уже не раз говорилось, чем больше апертура, тем лучше.

В комплекте идут два сменных окуляра на 20 и 4 мм, а также трёхкратная линза Барлоу. В сумме, если смотреть в прилагающиеся к телескопу характеристики, эта оптика должна давать увеличение аж до 750 крат! Однако на практике легко можно сосчитать, до каких пределов кратности устройство будет выдавать вам чёткую картинку. Нужно всего лишь умножить значение апертуры (в мм) на 1,4 - получившаяся цифра будет именно той кратностью, после достижения которой телескоп вряд ли выдаст суперчёткую картинку. Впрочем, если умножить тот же показатель апертуры на 2, вы узнаете абсолютный качественный предел увеличения вашего устройства. Если говорить об этой модели Celestron , то 127 х 1,4 = 177,8 крат, 127 х 2 = 254 крат. Итого - 254 крат будет самым что ни на есть "потолком" в плане увеличения.

Предельная звёздная величина различаемых объектов +13 m.

Рефлектор с экваториальной монтировкой - очень хорошо для наблюдения небесных объектов, практически никак - для наземных. У модели от Celestron экваториальная монтировка идёт с механизмами тонких движений и координатными кругами, это всё поможет новичку справиться с нелёгким на первых порах делом наведения и наблюдения.

Вес телескопа - 7,7 кг, длина трубы - 508 мм. Гораздо компактнее рефрактора с такой же апертурой - тот длиной будет побольше метра, а показатель веса "нырнёт" за отметку 30 кг. Не лучший вариант для пешего похода, не так ли?

Типичный представитель рефлекторов, отлично подходит для наблюдений объектов глубокого космоса.

А теперь поговорим о зеркально-линзовых (катадиоптрических) телескопах. Иногда их ещё называют комбинированным типом.

Если в рефракторе объектив основан на использовании линзы, в рефлекторе - на зеркале, то катадиоптрики используют в своём устройстве и линзы, и зеркальную оптику. Такие объективы сложнее в изготовлении, потому их цена, естественно, будет выше, чем, допустим, стоимость рефлектора с той же апертурой. Вторая неприятная особенность такого типа заключается в том, что в связи со своей конструкцией зеркально-линзовое устройство не может обеспечить наблюдателя настолько же чёткой картинкой, как, к примеру, рефрактор.

Ещё из "минусов" - зеркально-линзовые телескопы с оптической схемой Шмидта - Кассегрена, к сожалению, не лишены коматической аберрации. А вот Максутов - Кассегрен могут похвастать картинкой без этих "помех".

Кроме прочего, катадиоптрики наиболее чувствительны к смене температурного режима - даже больше рефлекторов.

Однако положительные моменты зеркально-линзовых подчас играют решающую роль для многих любителей астрономии.

В первую очередь - это, конечно, размеры. К примеру, рефрактор с апертурой 90 мм будет в длину не менее 95 см (а скорее всего, около метра). А аналогичный по размеру апертуры Максутов - Кассегрен - 28 см длиной. Существенная разница, не так ли? Весят катадиоптрики, соответственно, тоже меньше прочих разновидностей.

Ну и не менее существенный момент - аберрации, точнее, почти полное их отсутствие. Если оптика качественная и при изготовлении телескопа производитель не допустил серьёзных "ляпов", то картинка будет лишена всех тех "неправильностей", что непременно хоть в какой-то степени сопровождают и рефракторы, и рефлекторы.

Для примера рассмотрим Celestron NexStar 90 SLT (16 300 руб.).

Как понятно уже из названия, апертура здесь равна 90 мм. Это один из представителей ряда Максутов - Кассегрен, то есть изображение, полученное с его помощью, будет практически лишено привычных аберраций.

В комплекте два сменных окуляра на 25 мм (50 крат) и 9 мм (139 крат), предельная звёздная величина обозреваемых объектов - 12,3 m.

Монтировка азимутальная с компьютерным наведением - подобная система в народе называется GoTo. В устройстве уже имеется база данных на 4000 объектов. Управление простое: выбираете объект из базы данных и телескоп автоматически "нацеливается" в нужную вам область неба. Выбор объекта делается при помощи пульта, у которого есть опция обновления через Интернет (естественно, при подключении к компьютеру). Возможности подобного управления не ограничены просто выбором какого-то объекта: GoTo позволяет наводить по координатам, получать краткую справку о каком-либо объекте; может по запросу выдавать координаты точки, на которую наведён в данный момент. Единственное, что может вызвать затруднения у новичков в астрономии, - перед началом использования телескоп нужно сориентировать на местности, то есть ввести место и время наблюдения, а также навести телескоп на пару-тройку известных пользователю звёзд. В принципе удобная система, зачастую экономящая время наблюдателя.

Штатив стальной для обеспечения максимальной устойчивости, крепление типа "ласточкин хвост" - прибор устанавливается быстрым и несложным движением. Вес телескопа - всего 5,4 кг.

Отличный вариант даже для новичков в астрономии. Возможности катадиоптрика, удобство GoTo плюс максимальная компактность - и вот уже под рукой инструмент настоящего астронома (конечно, если не отпугивает цена).

Найти идеальный универсальный телескоп невозможно. У любого типа есть свои сильные и слабые стороны. Однако, если вы точно знаете, что вас больше всего интересует на небе, можно подобрать такое устройство, которое по максимуму раскроет свои возможности.

Ребёнку в качестве первого телескопа (особенно в городских условиях) подойдёт рефрактор с апертурой 70-90 мм: он сможет детально рассмотреть и поверхность Луны, и планеты Солнечной системы, и Солнце. Единственная пометка: категорически нельзя рассматривать Солнце в телескоп без специальных фильтров - вы просто лишитесь зрения, ведь в данном случае телескоп действует как обыкновенная лупа. Вспомните, что происходит с бумажкой, если направить на неё солнечный луч через увеличительное стекло: она быстро загорится. А теперь представьте, что на месте бумажки - ваш глаз, и вам мигом расхочется экспериментировать с Солнцем.

Для качественных наблюдений далёких космических объектов (туманностей, шаровых звездных скоплений и прочего) вдали от городской засветки лучше всего подойдёт рефлектор с апертурой где-то на 114-150 мм. Конечно, чем больше этот показатель, тем лучше - там уже смотрите по деньгам.

Ну а если вы много путешествуете и при этом хотите постоянно иметь при себе телескоп, то лучшим выбором будет какая-нибудь модель Максутов - Кассегрен или другой прибор из ряда зеркально-линзовых: они компактны и их будет легче переносить.

В том случае, если вы сами ещё не решили, что именно хотите изучать, - берите рефрактор. На первое время, чтобы понять, интересно ли вам вообще такое занятие, его вполне достаточно. Лучше, если апертура будет где-то 70-90 мм: меньшие размеры вряд ли доставят настоящее удовольствие.

И не забывайте о габаритах: многие телескопы чрезвычайно неудобны в плане ручной переноски и не имеющим средства передвижения людям стоит подумать и об этом.