Как нарисовать симметричный предмет. Совершенство линий – осевая симметрия в жизни

Цели:

  • образовательные:
    • дать представление о симметрии;
    • познакомить с основными видами симметрии на плоскости и в пространстве;
    • выработать прочные навыки построения симметричных фигур;
    • расширить представления об известных фигурах, познакомив со свойствами, связанных с симметрией;
    • показать возможности использования симметрии при решении различных задач;
    • закрепить полученные знания;
  • общеучебные:
    • научить настраивать себя на работу;
    • научить вести контроль за собой и соседом по парте;
    • научить оценивать себя и соседа по парте;
  • развивающие:
    • активизировать самостоятельную деятельность;
    • развивать познавательную деятельность;
    • учить обобщать и систематизировать полученную информацию;
  • воспитательные:
    • воспитываать у учащихся “чувство плеча”;
    • воспитывать коммуникативность;
    • прививать культуру общения.

ХОД УРОКА

Перед каждым лежат ножницы и лист бумаги.

Задание 1 (3 мин).

– Возьмем лист бумаги, сложим его попалам и вырежем какую-нибудь фигурку. Теперь развернем лист и посмотрим на линию сгиба.

Вопрос: Какую функцию выполняет эта линия?

Предполагаемый ответ: Эта линия делит фигуру пополам.

Вопрос: Как расположены все точки фигуры на двух получившихся половинках?

Предполагаемый ответ: Все точки половинок находятся на равном расстоянии от линии сгиба и на одном уровне.

– Значит, линия сгиба делит фигурку пополам так, что 1 половинка является копией 2 половинки, т.е. эта линия непростая, она обладает замечательным свойством (все точки относительно ее находятся на одинаковом расстоянии), эта линия – ось симметрии.

Задание 2 (2 мин).

– Вырезать снежинку, найти ось симметрии, охарактеризовать ее.

Задание 3 (5 мин).

– Начертить в тетради окружность.

Вопрос: Определить, как проходит ось симметрии?

Предполагаемый ответ: По-разному.

Вопрос: Так сколько осей симметрии имеет окружность?

Предполагаемый ответ: Много.

– Правильно, окружность имеет множество осей симметрии. Такой же замечательной фигурой является шар (пространственная фигура)

Вопрос: Какие еще фигуры имеют не одну ось симметрии?

Предполагаемый ответ: Квадрат, прямоугольник, равнобедренный и равносторонний треугольники.

– Рассмотрим объемные фигуры: куб, пирамиду, конус, цилиндр и т.д. Эти фигуры тоже имеют ось симметрии.Определите, сколько осей симметрии у квадрата, прямоугольника, равностороннего треугольника и у предложенных объемных фигур?

Раздаю учащимся половинки фигурок из пластилина.

Задание 4 (3 мин).

– Используя полученную информацию, долепить недостающую часть фигурки.

Примечание: фигурка может быть и плоскостной, и объемной. Важно, чтобы учащиеся определили, как проходит ось симметрии, и долепили недостающий элемент. Правильность выполнения определяет сосед по парте, оценивает, насколько правильно проделана работа.

Из шнурка одного цвета на рабочем столе выложена линия (замкнутая, незамкнутая, с самопересечением, без самопересечения).

Задание 5 (групповая работа 5 мин).

– Определить визуально ось симметрии и относительно нее достроить из шнурка другого цвета вторую часть.

Правильность выполненной работы определяется самими учениками.

Перед учащимися представлены элементы рисунков

Задание 6 (2 мин).

– Найдите симметричные части этих рисунков.

Для закрепления пройденного материала предлагаю следующие задания, предусмотренные на 15 мин.:

Назовите все равные элементы треугольника КОР и КОМ. Каков вид этих треугольников?

2. Начертите в тетради несколько равнобедренных треугольников с общим основанием равным 6 см.

3. Начертите отрезок АВ. Постройте прямую перпендикулярную отрезку АВ и проходящую через его середину. Отметьте на ней точки С и D так, чтобы четырехугольник АСВD был симметричен относительно прямой АВ.

– Наши первоначальные представления о форме относятся к очень отдаленной эпохе древнего каменного века – палеолита. В течение сотен тысячелетий этого периода люди жили в пещерах, в условиях мало отличавшихся от жизни животных. Люди изготовляли орудия для охоты и рыболовства, вырабатывали язык для общения друг с другом, а в эпоху позднего палеолита украшали свое существование, создавая произведения искусства, статуэтки и рисунки, в которых обнаруживается замечательное чувство формы.
Когда произошел переход от простого собирания пищи к активному ее производству, от охоты и рыболовства к земледелию, человечество вступает в новый каменный век, в неолит.
Человек неолита обладал острым чувством геометрической формы. Обжиг и раскраска глиняных сосудов, изготовление камышовых циновок, корзин, тканей, позже – обработка металлов вырабатывали представления о плоскостных и пространственных фигурах. Неолитические орнаменты радовали глаз, выявляя равенство и симметрию.
– А где в природе встречается симметрия?

Предполагаемый ответ: крылья бабочек, жуков, листья деревьев…

– Симметрию можно наблюдать и в архитектуре. Строя здания, строители четко придерживаются симметрии.

Поэтому здания получаются такие красивые. Также примером симметрии служит человек, животные.

Задание на дом:

1. Придумать свой орнамент, изобразить его на листе формат А4 (можно нарисовать в виде ковра).
2. Нарисовать бабочек, отметить, где присутствуют элементы симметрии.

Сегодня мы с вами поговорим о явлении, с которым каждому из нас приходится постоянно встречаемся в жизни: о симметрии. Что такое симметрия?

Приблизительно мы все понимаем значение этого термина. Словарь гласит: симметрия – это соразмерность и полное соответствие расположения частей чего-нибудь относительно прямой или точки. Симметрия бывает двух видов: осевая и лучевая. Сначала рассмотрим осевую. Это, скажем так,«зеркальная» симметрия, когда одна половина предмета полностью тождественна второй, но повторяет ее как отражение. Поглядите на половинки листа. Они зеркально симметричны. Симметричны и половины человеческого тела (анфас) – одинаковые руки и ноги, одинаковые глаза. Но не станем заблуждаться, на самом деле в органическом (живом) мире абсолютной симметрии не встретить! Половинки листа копируют друг друга далеко не в совершенстве, то же относится к человеческому телу (присмотритесь сами); так же обстоит дело и с другими организмами! Кстати, стоит добавить, что любое симметричное тело симметрично относительно зрителя только в одном положении. Стоит, скажем, повернуть лист, или поднять одну руку и что же? – сами видите.

Подлинной симметрии люди добиваются в произведениях своего труда (вещах) - одежде, машинах… В природе же она свойственна неорганическим образованиям, например, кристаллам.

Но перейдем к практике. Начинать со сложных объектов вроде людей и животных не стоит, попробуем в качестве первого упражнения на новом поприще дорисовать зеркальную половинку листа.

Рисуем симметричный предмет - урок 1

Следим, чтобы получилось как можно более похоже. Для этого будем буквально строить нашу половинку. Не подумайте, что так легко, тем более с первого раза, одним росчерком провести зеркально-соответствующую линию!

Разметим несколько опорных точек для будущей симметричной линии. Действуем так: проводим карандашом без нажима несколько перпендикуляров к оси симметрии - средней жилке листа. Четыре-пять пока хватит. И на этих перпендикулярах отмеряем вправо такое же расстояние, какое на левой половине до линии края листика. Советую пользоваться линейкой, не очень-то надейтесь на глазок. Нам, как правило, свойственно уменьшать рисунок - на опыте замечено. Отмерять расстояния пальцами не порекомендуем: слишком большая погрешность.

Полученные точки соединим карандашной линией:

Теперь придирчиво смотрим - действительно ли половины одинаковы. Если всё правильно - обведём фломастером, уточним нашу линию:

Лист тополя дорисовали, теперь можно замахнуться и на дубовый.

Нарисуем симметричную фигуру - урок 2

В этом случае сложность заключается в том,что обозначены жилки и они не перпендикулярны оси симметрии и придётся не только размеры но ещё и угол наклона точно соблюдать. Ну что ж - тренируем глазомер:

Вот и симметричный лист дуба нарисовался, вернее, мы его построили по всем правилам:

Как нарисовать симметричный предмет - урок 3

И закрепим тему - дорисуем симметричный лист сирени.

У него тоже интересная форма - сердцевидная и с ушками у основания придётся попыхтеть:

Вот и начертили:

Поглядите на получившуюся работу издали и оцените насколько точно нам удалось передать требуемое сходство. Вот вам совет: поглядите на ваше изображение в зеркале, и оно вам укажет, есть ли ошибки. Другой способ: перегните изображение точно по оси (правильно перегибать мы с вами уже научились) и вырежьте листик по изначальной линии. Посмотрите на саму фигуру и на отрезанную бумагу.

ТРЕУГОЛЬНИКИ.

§ 17. СИММЕТРИЯ ОТНОСИТЕЛЬНО ПРЯМОЙ.

1. Фигуры, симметричные друг другу.

Начертим на листе бумаги чернилами какую-нибудь фигуру, а карандашом вне её - произвольную прямую. Затем, не давая чернилам высохнуть, перегнём лист бумаги по этой прямой так, чтобы одна часть листа налегла на другую. На этой другой части листа получится, таким образом, отпечаток данной фигуры.

Если затем лист бумаги опять распрямить, то на нём окажутся две фигуры, которые называются симметричными относительно данной прямой (черт. 128).

Две фигуры называются симметричными относительно некоторой прямой, если при перегибании плоскости чертежа по этой прямой они совмещаются.

Прямая, относительно которой данные фигуры симметричны, называется их осью симметрии .

Из определения симметричных фигур следует, что всякие симметричные фигуры равны.

Получить симметричные фигуры можно и не пользуясь перегибанием плоскости, а с помощью геометрического построения. Пусть требуется построить точку С", симметричную данной точке С относительно прямой АВ. Опустим из точки С перпендикуляр
СD на прямую АВ и на продолжении его отложим отрезок DС" = DС. Если перегнём плоскость чертежа по АВ, то точка С совместится с точкой С": точки С и С" симметричны (черт. 129).

Пусть требуется теперь построить отрезок С"D", симметричный данному отрезку СD относительно прямой АВ. Построим точки С" и D", симметричные точкам С и D. Если перегнём плоскость чертежа по АВ, то точки С и D совместятся соответственно с точками С" и D" (черт. 130).Поэтому отрезки СD и С"D" совместятся, они будут симметричны.

Построим теперь фигуру, симметричную данному многоугольнику АВСDЕ относительно данной оси симметрии МN (черт. 131).

Для решения этой задачи опустим перпендикуляры Аа , Вb , Сс , Dd и Ее на ось симметрии МN. Затем на продолжениях этих перпендикуляров отложим отрезки
а
А" = Аа , b В" = Вb , с С" = Сс; d D"" =Dd и е Е" = Ее .

Многоугольник А"В"С"D"Е" будет симметричным многоугольнику АВСDЕ. Действительно, если перегнуть чертёж по прямой МN, то соответствующие вершины обоих многоугольников совместятся, а значит, совместятся и сами многоугольники; это и доказывает, что многоугольники АВСDЕ и А"В"С"D"Е" симметричны относительно прямой MN.

2. Фигуры, состоящие из симметричных частей.

Часто встречаются геометрические фигуры, которые какой-нибудь прямой разделяются на две симметричные части. Такие фигуры называются симметричными.

Так, например, угол - фигура симметричная, и биссектриса угла является его осью симметрии, так как при перегибании по ней одна часть угла совмещается с другой (черт. 132).

В круге осью симметрии является его диаметр, так как при перегибании по нему один полукруг совмещается с другим (черт. 133). Точно так же симметричны фигуры на чертежах 134, а, б.

Симметричные фигуры часто встречаются в природе, строительстве, в украшениях. Изображения, помещённые на чертежах 135 и 136, симметричны.

Следует заметить, что симметричные фигуры совместить простым передвижением по плоскости можно лишь в некоторых случаях. Чтобы совместить симметричные фигуры, как правило, необходимо одну из них повернуть обратной стороной,

Определение. Симметрия (означает «соразмерность») - свойство геометрических объектов совмещаться с собой при определенных преобразованиях. Под симметрией понимают всякую правильность во внутреннем строении тела или фигуры.

Симметрия относительно точки - это центральная симметрия (рис. 23 ниже), а симметрия относительно прямой - это осевая симметрия (рис. 24 ниже).

Симметрия относительно точки предполагает, что по обе стороны от точки на одинаковых расстояниях находится что-либо, например другие точки или геометрическое место точек (прямые линии, кривые линии, геометрические фигуры).

Если соединить прямой симметричные точки (точки геометрической фигуры) через точку симметрии, то симметричные точки будут лежать на концах прямой, а точка симметрии будет ее серединой. Если закрепить точку симметрии и вращать прямую, то симметричные точки опишут кривые, каждая точка которых тоже будет симметрична точке другой кривой линии.

Симметрия относительно прямой (оси симметрии) предполагает, что по перпендикуляру, проведенному через каждую точку оси симметрии, на одинаковом расстоянии от нее расположены две симметричные точки. Относительно оси симметрии (прямой) могут располагаться те же геометрические фигуры, что и относительно точки симметрии.

Примером может служить лист тетради, который согнут пополам, если по линии сгиба провести прямую линию (ось симметрии). Каждая точка одной половины листа будет иметь симметричную точку на второй половине листа, если они расположены на одинаковом расстоянии от линии сгиба на перпендикуляре к оси.

Линия осевой симметрии, как на рисунке 24, вертикальна, и горизонтальные края листа перпендикулярны ей. Т. е. ось симметрии служит перпендикуляром к серединам горизонтальных ограничивающих лист прямых. Симметричные точки (R и F, C и D) расположены на одинаковом расстоянии от осевой прямой - перпендикуляра к прямым, соединяющим эти точки. Следовательно, все точки перпендикуляра (оси симметрии), проведенного через середину отрезка, равноудалены от его концов; или любая точка перпендикуляра (оси симметрии) к середине отрезка равноудалена от концов этого отрезка.

6.7.3. Осевая симметрия

Точки А и А 1 симметричны относительно прямой m, так как прямая m перпендикулярна отрезку АА 1 и проходит через его середину.

m – ось симметрии.

Прямоугольник ABCD имеет две оси симметрии: прямые m и l .

Если чертеж перегнуть по прямой m или по прямой l, то обе части чертежа совпадут.

Квадрат ABCD имеет четыре оси симметрии: прямые m , l , k и s .

Если квадрат перегнуть по какой-либо из прямых: m , l , k или s , то обе части квадрата совпадут.

Окружность с центром в точке О и радиусом ОА имеет бесчисленное количество осей симметрии. Это прямые: m, m 1, m 2 , m 3 .

Задание. Построить точку А 1 , симметричную точке А(-4; 2) относительно оси Ох.

Построить точку А 2 , симметричную точке А(-4; 2) относительно оси Оy.

Точка А 1 (-4; -2) симметрична точке А(-4; 2) относительно оси Ох, так как ось Ох перпендикулярна отрезку АА 1 и проходит через его середину.

У точек, симметричных относительно оси Ох абсциссы совпадают, а ординаты являются противоположными числами.

Точка А 2 (4; -2) симметрична точке А(-4; 2) относительно оси Оy, так как ось Оу перпендикулярна отрезку АА 2 и проходит через его середину.

У точек, симметричных относительно оси Оу ординаты совпадают, а абсциссы являются противоположными числами.

www.mathematics-repetition.com

wiki.eduVdom.com

Инструменты пользователя

Инструменты сайта

Боковая панель

Геометрия:

Контакты

Центральная и осевая симметрии

Центральная симметрия

Две точки А и А 1 называются симметричными относительно точки О, если О - середина отрезка АА 1 (рис.1). Точка О считается симметричной самой себе.

Пример центральной симметрии

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией.

Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм (рис.2).

Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма - точка пересечения его диагоналей. Прямая также обладает центральной симметрией, однако в отличие от окружности и параллелограмма, которые имеют только один центр симметрии (точка О на рис.2), у прямой их бесконечно много - любая точка прямой является ее центром симметрии.

Осевая симметрия

Две точки А и А 1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА 1 и перпендикулярна к нему (рис.3). Каждая точка прямой а считается симметричной самой себе.

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры.

Примеры таких фигур и их оси симметрии изображены на рисунке 4.

Заметим, что у окружности любая прямая, проходящая через ее центр, является осью симметрии.

Сравнение симметрий

Центральная и осевая симметрии

Сколько всего осей симметрии имеет фигура, изображённая на рисунке?

wiki.eduvdom.com

Урок «Осевая и центральная симметрия»

Краткое описание документа:

Симметрия – достаточно интересная тема в геометрии, так как именно это понятие очень часто встречается не только в процессе жизнедеятельности человека но и в природе.

Первая часть видео-презентации «Осевая и центральная симметрия» дает определение симметричности двух точек относительно прямой на плоскости. Условием их симметричности является возможность проведения через них отрезка, через середину которого будет проходить заданная прямая. Обязательным условием такой симметричности является перпендикулярность отрезка и прямой.

Следующая часть видео-урока дает наглядный пример определения, который показывается в виде чертежа, где несколько пар точек симметричны относительно прямой, а любая точка на этой прямой симметрична сама себе.

После получения первоначальных понятий о симметрии, ученикам предлагается более сложное определение фигуры, симметричной относительно прямой. Определение предлагается в виде текстового правила, а также параллельно сопровождается речью диктора за кадром. Завершает эту часть примеры симметричных и не симметричных фигур, относительно прямой. Интересно, что существуют геометрические фигуры, имеющие несколько осей симметрии – все они наглядно представлены в виде чертежей, где оси выделены отдельным цветом. Облегчить понимание предлагаемого материала можно таким способом – предмет или фигура является симметричной, если она точно совпадает при складывании двух половин относительно своей оси.

Кроме осевой симметрии существует симметрия относительно одной точки. Именно этому понятию посвящена следующая часть видео-презентации. Сначала дается определение симметричности двух точек относительно третьей, затем предоставляется пример в виде рисунке, где показаны симметричная и не симметричная пара точек. Завершает эту часть урока примеры геометрических фигур, у которых присутствует или отсутствует цент симметрии.

В заключении урока ученикам предлагается ознакомиться с наиболее яркими примерами симметрии, которые можно встретить в окружающем мире. Понимание и умение строить симметричные фигуры просто необходимы в жизни людей, которые занимаются самыми разными профессиями. По своей сути симметрия – основа всей человеческой цивилизации, так как 9 из 10 предметов, окружающих человека, имеют тот или иной тип симметрии. Без симметрии было бы не возможно возведение многих больших архитектурных сооружений, не получилось бы достигнуть впечатляющих мощностей в промышленности и так далее. В природе симметрия также – очень распространенное явление, и если в неодушевленных предметах ее встретить практически невозможно, то живой мир буквально кишит ею – практически вся флора и фауна, за редким исключением, имеет или осевую, или центральную симметрию.

Обычная школьная программа разрабатывается с таким учетом, чтобы ее мог бы понять любой ученик, допущенный к занятием. Видео-презентация в несколько раз облегчает этот процесс, так как одновременно воздействует на несколько центров освоения информации, предоставляет материал в нескольких цветах, тем самым, заставляя учеников концентрировать внимание учеников на самом важном во время урока. В отличии от обычного способа обучения в школах, когда не каждый учитель имеет возможность или желание отвечать ученикам на уточняющие вопросы, видео-урок легко можно перемотать на необходимое место, чтобы заново прослушать диктора и прочитать нужную информацию еще раз, вплоть до ее полного понимания. Учитывая простоту подачи материала, видео-презентацию можно использовать не только во время школьных занятий, но и в домашних условиях, в качестве самостоятельного способа обучения.

urokimatematiki.ru

Презентация «Движения. Осевая симметрия»

Документы в архиве:

Название документа 8.

Описание презентации по отдельным слайдам:

Центральная симметрия - один из примеров движения

Определение Осевая симметрия с осью а - отображение пространства на себя, при котором любая точка К переходит в симметричную ей точку К1 относительно оси а

1) Оxyz - прямоугольная система координат Оz - ось симметрии 2) М(x; y; z) и M1(x1; y1; z1), симметричны относительно оси Оz Формулы будут верны и в случае, если точка М ⊂ Оz Осевая симметрия является движением Z X Y М(x; y; z) M1(x1; y1; z1) O

Доказать: Задача 1 при осевой симметрии прямая, образующая с осью симметрии угол φ, отображается на прямую, так же образующую с осью симметрии угол φ Решение: при осевой симметрии прямая, образующая с осью симметрии угол φ, отображается на прямую, так же образующую с осью симметрии угол φ A F E N m l a φ φ

Дано: 2) △ABD - прямоугольный, по теореме Пифагора: 1) DD1 ⏊ (A1C1D1), 3) △BDD2 - прямоугольный, по теореме Пифагора: Задача 2 Найти: BD2 Решение:

Краткое описание документа:

Презентация «Движения. Осевая симметрия» представляет наглядный материал для объяснения на школьном уроке математики основных положений данной темы. В данной презентации осевая симметрия рассматривается как еще один вид движения. В ходе презентации ученикам напоминается изученное понятие центральной симметрии, дается определение осевой симметрии, доказывается положение о том, что осевая симметрия является движением, а также описывается решение двух задач, в которых необходимо оперировать понятием осевой симметрии.

Осевая симметрия является движением, поэтому ее представление на классной доске вызывает сложности. Более четкие понятные построения можно сделать с помощью электронных средств. Благодаря этому построения хорошо видны с любой парты в классе. На рисунках есть возможность выделить цветом детали построения, акцентировать внимание на особенностях операции. С той же целью используются анимационные эффекты. С помощью инструментов презентации учителю легче достичь целей обучения, поэтому презентация применяется для повышения эффективности урока.

Демонстрация начинается с напоминания ученикам об изученном виде движения – центральной симметрии. Примером применения операция служит симметричное отображение нарисованной груши. На плоскости отмечается точка, относительно которой каждая точка изображения переходит в симметричную. Отображенное изображение, таким образом, перевернуто. При этом все расстояния между точками объекта сохраняются при центральной симметрии.

На втором слайде вводится понятие осевой симметрии. На рисунке изображен треугольник, каждая его вершина переходит в симметричную вершину треугольника относительно некоторой оси. В рамке выделено определение осевой симметрии. Отмечается, что при нем каждая точка объекта переходит в симметричную.

Далее в прямоугольной координатной системе рассматривается осевая симметрия, свойства координат объекта, отображенного с помощью осевой симметрии, в также доказывается, что при данном отображении сохраняются расстояния, что есть признаком движения. Справа на слайде изображается прямоугольная система координат Оxyz. За ось симметрии принимается ось Оz. В пространстве отмечена точка М, при соответствующем отображении переходящая в М 1 . На рисунке видно, что при осевой симметрии точка сохраняет свою аппликату.

Отмечается, что среднее арифметическое абсцисс и ординат данного отображения при осевой симметрии равно нулю, то есть (x+ x 1)/2=0; (y+ y 1)/2=0. Иначе это свидетельствует, что x=-x 1 ; y=-y 1 ; z=z 1 . Правило сохраняется и в случае, если точка М отмечена на самой оси Оz.

Для рассмотрения, сохраняются ли расстояния между точками при осевой симметрии, описывается операция на точками А и В. Отображаясь относительно оси Оz, описываемые точки переходят в А1 и В1. Чтобы определить расстояние между точками, воспользуемся формулой, в которой расстояние вычисляется по координатам. Отмечается, что АВ=√(x 2 -x 1) 2 +(y 2 -y 1) 2 +(z 2 -z 1) 2), а для отображенных точек А 1 В 1 =√(-x 2 +x 1) 2 +(-y 2 +y 1) 2 +(z 2 -z 1) 2). Учитывая свойства возведения в квадрат, можно отметить, что АВ=А 1 В 1 . Это говорит о том, что расстояния сохраняются между точками – главный признак движения. Значит, осевая симметрия есть движение.

На слайде 5 рассматривается решение задачи 1. В ней необходимо доказать утверждение, что прямая, проходящая под углом φ к оси симметрии, образует с ней такой же угол φ. К задаче дается изображение, на котором начерчена ось симметрии, а также прямая m, образующая с осью симметрии угол φ, и относительно оси ее отображение – прямая l. Доказательство утверждения начинается с построения дополнительных точек. Отмечается, что прямая m пересекает ось симметрии в А. Если отметить на этой прямой точку F≠A и опустить от нее перпендикуляр на ось симметрии, получим пересечение перпендикуляра с осью симметрии в точке Е. При осевой симметрии отрезок FE переходит в отрезок NE. В результате такого построения получили прямоугольные треугольники ΔAEF и ΔAEN. Эти треугольник равны, так как АЕ является у них общим катетом, а FE = NE равны по построению. Соответственно, угол ∠EAN=∠EAF. Из этого следует, что отображенная прямая также образует с осью симметрии угол φ. Задача решена.

На последнем слайде рассматривается решение задачи 2, в которой необходимо дан куб ABCDA 1 B 1 C 1 D 1 со стороной а. Известно, что после симметрии относительно оси, содержащей ребро B 1 D 1 , точка D переходит в D 1 . В задаче требуется найти BD 2 . К задаче делается построение. На рисунке изображен куб, по которому видно, что осью симметрии является диагональ грани куба B 1 D 1 . Отрезок, образующийся при движении точки D, перпендикулярен плоскости грани, которой принадлежит ось симметрии. Так как при движении сохраняются расстояния между точками, то DD 1 = D 1 D 2 =а, то есть расстояние DD 2 =2а. Из прямоугольного треугольника ΔABD по теореме Пифагора следует, что BD=√(AB 2 +AD 2)=а√2. Из прямоугольного треугольника ΔВDD 2 следует по теореме Пифагора BD 2 =√(DD 2 2 +ВD 2)=а√6. Задача решена.

Презентация «Движения. Осевая симметрия» используется для повышения эффективности школьного урока математики. Также этот метод наглядности поможет учителю, осуществляющему дистанционное обучение. Материал может быть предложен для самостоятельного рассмотрения учениками, которые недостаточно хорошо усвоили тему урока.

Почему жена ушла и не подает на развод Практический форум о настоящей любви Жена подаёт на развод.Помогите! Жена подаёт на развод.Помогите! Сообщение MIRON4IK » 23 окт 2009, 16:22 Сообщение raz » 23 окт 2009, 19:17 Сообщение MIRON4IK » 23 окт 2009, 22:21 Сообщение edon » […]

  • Суд над фашизмом – Нюрнбергский процесс 8 августа 1945 г., через три месяца после Победы над фашистской Германией страны-победительницы: СССР, США, Великобритания и Франция в ходе лондонской конференции утвердили Соглашение о создании […]
  • Дурович А.П. Маркетинг в туризме Учебное пособие. - Минск: Новое знание, 2003. - 496 с. Раскрываются сущность, принципы маркетинга, его функции и технология маркетинговой деятельности в туризме. Концептуально структура учебного пособия […]
  • Учебное пособие "Таблица умножения", Lakeshore Планшет "Деление", который сама себя проверяет, настолько упрощает математику, что дети могут учиться сами! Дети просто нажимают кнопки равенства. и тут же появляются ответы-подсказки! 81 […]
  • С древних времен человек выработал представления о красоте. Красивы все творения природы. По-своему прекрасны люди, восхитительны животные и растения. Радует взор зрелище драгоценного камня или кристалла соли, сложно не любоваться снежинкой или бабочкой. Но почему так происходит? Нам кажется правильным и завершенным вид объектов, правая и левая половина которых выглядит одинаково, как в зеркальном отражении.

    Видимо, первыми о сути красоты задумывались люди искусства. Древние скульпторы, изучавшие строение человеческого тела, еще в V веке до н.э. стали применять понятие «симметрия». Это слово имеет греческое происхождение и означает гармоничность, пропорциональность и похожесть расположения составляющих частей. Платон утверждал, что прекрасным может быть лишь то, что симметрично и соразмерно.

    В геометрии и математике рассматриваются три вида симметрии: осевая симметрия (относительно прямой), центральная (относительно точки) и зеркальная (относительно плоскости).

    Если каждая из точек объекта имеет в пределах него свое точное отображение относительно его центра - имеет место центральная симметрия. Ее примером являются такие геометрические тела, как цилиндр, шар, правильная призма и т.д.

    Осевая симметрия точек относительно прямой предусматривает, что эта прямая пересекает середину отрезка, соединяющего точки, и перпендикулярна ему. Примеры биссектриса неразвернутого угла равнобедренного треугольника, любая прямая, проведенная через центр окружности, и т.д. Если свойственна осевая симметрия, определение зеркальных точек можно наглядно представить, просто перегнув ее по оси и сложив равные половинки «лицом к лицу». Искомые точки при этом соприкоснутся.

    При зеркальной симметрии точки объекта расположены одинаково относительно плоскости, что проходит через его центр.

    Природа мудра и рациональна, поэтому почти все ее творения имеют гармоничное строение. Это относится и к живым существам, и к неодушевленным объектам. Для строения большинства форм жизни характерен один из трех видов симметрии: двусторонняя, лучевая или шаровидная.

    Чаще всего осевая может наблюдаться у растений, развивающихся перпендикулярно поверхности почвы. В этом случае симметричность является результатом поворота идентичных элементов вокруг общей оси, находящейся в центре. Угол и частота их расположения могут быть разными. Примером служат деревья: ель, клен и другие. У некоторых животных осевая симметрия тоже встречается, но это бывает реже. Конечно, природе редко присуща математическая точность, но похожесть элементов организма все равно поразительна.

    Биологами чаще рассматривается не осевая симметрия, а двусторонняя (билатеральная). Ее примером могут служить крылья бабочки или стрекозы, листья растений, лепестки цветов и т.д. В каждом случае правая и левая части живого объекта равны и представляют собой зеркальное отображение друг друга.

    Шаровидная симметрия характерна для плодов многих растений, для некоторых рыб, моллюсков и вирусов. А примерами лучевой симметрии являются некоторые виды червей, иглокожие.

    В глазах человека несимметричность чаще всего ассоциируется с неправильностью или ущербностью. Поэтому в большинстве творений людских рук прослеживается симметричность и гармония.