Хронический пиелонефрит национальные рекомендации. Клинические рекомендации по пиелонефриту. Хронический пиелонефрит у мужчин

Анализаторы выполняют большое количество функций или операций с сигналами. Среди них важнейшие: I. Обнаружение сигналов. II. Различение сигналов. III. Передача и преобразование сигналов. IV. Кодирование поступающей информации. V. Детектиро­вание тех или иных признаков сигналов. VI. Опознание образов. Как и во всякой класси­фикации это деление несколько условно.

Обнаружение и различение сигналов (I, II) обеспечивается прежде всего рецептора­ми, а детектирование и опознание (V, VI) сигналов высшими корковыми уровнями ана­лизаторов. Между тем передача, преобразование и кодирование (III, IV) сигналов свойственны всем слоям анализаторов.

I, Обнаружение сигналов начинается в рецепторах - специализированных клетках, эволюционно приспособленных к восприятию из внешней или внутренней среды организ­ма того или иного раздражителя и преобразованию его из физической или химической формы в форму нервного возбуждения.

Классификация рецепторов. Все рецепторы разделяют на две большие группы: внеш­ние, или экстерорецепторы, и внутренние, или интерорецепторы. К экстерорецепторам относятся: слуховые, зрительные, обонятельные, вкусовые, осязательные рецепторы, к интерорецепторам - висцерорецепторы (сигнализирующие о состоянии внутренних органов), вестибуло- и проприорецепторы (рецепторы опорно-двигательного аппарата).

По характеру контакта со средой рецепторы делятся на дистантные, получающие информацию на некотором расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные - возбуждающиеся при непосредственном соприкосно­вении с ним.

В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы человека могут быть разделены на 1) механорецепторы, к. которым относятся рецепторы слуховые, гравитационные, вестибулярные, тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой систе­мы; 2) хеморецепторы, включающие рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы; 3) фоторецепторы, 4) терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны); 5) болевые (ноцицептивные) рецепторы, кроме которых болевые раздражения могут восприниматься и другими рецепторами.

Все рецепторные аппараты делятся на первичночувствующие (первичные) и вторич-ночувствующие (вторичные). К первым относятся рецепторы обоняния, тактильные ре­цепторы и проприорецепторы. Они отличаются тем, что восприятие и преобразование энергии раздражения в энергию нервного возбуждения происходит у них в самом чувствительном нейроне. К вторичночувствующим относятся рецепторы вкуса, зрения, слуха, вестибулярного аппарата. У них между раздражителем и первым чувствительным нейроном находится высокоспециализированная рецепторная клетка, т. е. первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.

По своим основным свойствам рецепторы делятся также на быстро- и медленно-адаптирующиеся, низко- и высокопороговые, мономодальные и полимодальные и т. д.

В практическом отношении наиболее важное значение имеет психофизиологическая классификация рецепторов по характеру ощущений, возникающих при их раздражении. Согласно данной классификации у человека различают зрительные, слуховые, обонятель­ные, вкусовые, осязательные рецепторы, терморецепторы, рецепторы положения тела и его частей в пространстве (проприо- и вестибулорецепторы) и рецепторы боли.

Механизмы возбуждения рецепторов. При действии стимула на рецепторную клетку происходят изменения пространственной конфигурации белковых рсцепторных молекул, встроенных в белково-липидные комплексы ее мембраны. Это приводит к изменению проницаемости мембраны для определенных ионов (чаще всего натрия) и возникновению ионного тока, генерирующего так называемый рецепторный потенциал. В первичночув-ствующих рецепторах этот потенциал действует на наиболее чувствительные участки мембраны, способные генерировать потенциалы действия - нервные импульсы.

Во вторичночувствующих рецепторах рецепторный потенциал вызывает выделение квантов медиатора из пресинаптического окончания реценторной клетки. Медиатор (например, ацетилхолин), воздействуя на постсинап гическую мембрану чувствительного нейрона, вызывает ее деполяризацию (постсинаптический потенциал - ПСП). Постси-наптический потенциал первого чувствительного нейрона называют генераторным потен­циалом и он приводит к генерации импульсного ответа. В первичночувствующих рецепто­рах рецепторный и генераторный потенциалы, обладающие свойствами локального отве­та, это одно и то же.

Большая часть рецепторов обладает так называемой фоновой импульсацией (спон­танно выделяет медиатор) в отсутствие всяких раздражении. Это позволяет передавать сведения о сигнале не только в виде учащения, но и в виде урежения потока импульсов. В то же время, наличие таких разрядов приводит к обнаружению сигналов на фоне «шумов». Под «шумами» пЪнимают не связанные с внешним раздражением импульсы, возникающие в рецепторах и нейронах в результате спонтанного выделения квантов медиатора, а также множественных возбудительных взаимодействий между нейронами.

Эти «шумы» затрудняют обнаружение сигналов, особенно при низкой их интенсив­ности или при их малых изменениях. В связи с этим понятие порога реакции становится статистическим: обычно требуется несколько раз определить пороговый стимул, чтобы принять надежное решение о его наличии или отсутствии. Это верно как на уровне пове­дения отдельного нейрона или рецептора, так и на уровне реакции всего организма.

В анализаторной системе процедура многократных оценок сигнала для принятия решения о его наличии или отсутствии заменяется сравнением одновременных реакций на этот сигнал целого ряда элементов. Вопрос решается как бы голосованием: если число элементов, одновременно возбуждаемых данным стимулом, больше некоторой критической величины, считают, что сигнал имел место. Отсюда следует, что порог реакции анализаторной системы на стимул зависит не только от возбуждения отдельного элемента (будь то рецептор или нейрон), но и от распределения возбуж­дения в популяции элементов.

Чувствительность рецепторных элементов к так называемым адекватным раздражи­телям, к восприятию которых они эволюционно приспособлены (свет для фоторецепто­ров, звук для рецепторов улитки внутреннего уха и т, д.), предельно высока. Так, обоня­тельные рецепторы способны возбудиться при действии одиночных молекул пахучих веществ, фоторецепторы способны возбуждаться одиночным квантом света в видимой части спектра, а волосковые клетки спирального (кортиева) органа реагируют на смещения базиллярной мембраны порядка 1 Ю"" М (0,1 А°), т. е. на энергию колебаний, равную 1 ^0~ ^ " г В^/см 2 (^ 10~ 9 эрг/(с-см 2). Более высокая чувствительность в послед­нем случае также невозможна, так как ухо при этом слышало бы уже в виде постоянного шума тепловое (броуновское) движение молекул.

Ясно, что чувствительность анализатора в целом не может быть выше чувствительности наиболее возбудимых из его рецепторов. Однако в обнаружении сигналов помимо рецепторов участвуют чувствительные нейроны каждого нервного слоя, которые различаются между собой по возбудимости. Эти различия очень велики: так, зрительные нейроны в разных отделах анализа­тора различаются по световой чувствительности в 10 7 раз. Поэтому чувствительность зрительного анализатора в целом зависит и от того, что на все более высоких уровнях системы увеличивается пропорция высокочувствительных нейронов. Это способствует надежному обнаружению системой слабых световых сигналов.

Я. Различение сигналов. До сих пор речь шла об абсолютной чувствительности ана­лизаторов. Важной характеристикой того, как они анализируют сигналы, является их спо­собность обнаруживать изменения интенсивности, временных показателей или простран­ственных признаков стимула. Эти операции анализаторных систем, относящиеся к ;";: члкчениго сигналов, начинаются уже в рецепторах, но и следующие анализаторные у,и".\!.."1пы в нем участвуют. Необходимо обеспечить разную реакцию на минимальное |!«;!„!!|чие между стимулами. Это минимальное различие и есть порог различения (раз-!;о1:!"!;ы;"{ порог, если речь идет о сравнении интенсивностей).

В 1834 г. Э. Вебер сформулировал следующий закон: ощущаемый прирост раздра­жения (порог различения) должен превышать раздражение, действовавшее ранее, на определенную долю. Так, усиление ощущения давления на кожу руки возникало лишь в том случае, когда накладывали дополнительный груз, составляющий определенную часть груза, положенного ранее: если раньше лежала гирька массой 100 г, то добавить (чтобы человек ощутил эту добавку) надо было 3-10~ 2 (3 г), а если лежала гирька в 200 г, то едва ощутимая добавка составляла 6 г. Полученная зависимость выражается формулой: Д///===сопз1, где / - раздражение. А/ - его ощущаемый прирост (порог различения), сопв!-постоянная величина (константа).

Аналогичные соотношения были получены и для зрения, слуха и других органов чувств челове­ка. Закон Вебера можно объяснить тем, что при повышении уровня интенсивности основного дли­тельно действующего раздражителя увеличивается не только ответная реакция на него, но и «шумы системы», а также углубляется адаптационное торможение. Поэтому, чтобы вновь добиться надежного различения добавок к этому раздражителю, надо их увеличивать до тех пор, пока они не превысят колебания этих возросших шумов и не превзойдут уровень торможения.

Выведена формула, по-иному выражающая зависимость ощущения от силы раздра­жения: Е==а-1о^1-{-Ь, где Е - величина ощущения, / - сила раздражения, а и и - кон­станты, различные для разных сигналов. Согласно этой формуле, ощущение увеличивает­ся пропорционально логарифму интенсивности раздражения. Данное обобщающее выра­жение, получившее название закона Вебера - Фехнера, подтверждено во множестве различных исследований.

Пространственное различение сигналов основано на различиях в пространственном распределении возбуждения в слое рецепторов и в нервных слоях. Так, если какие-то два раздражителя возбудили два соседних рецептора, то различение этих двух раздражении невозможно, а они будут восприняты как единое целое. Для пространственного различе­ния двух стимулов необходимо, чтобы между возбуждаемыми ими рецепторами находил­ся хотя бы один невозбужденный рецепторный элемент. Подобные эффекты возникают при восприятии слуховых раздражении.

Для временного различения двух раздражении необходимо, чтобы вызванные ими нервные процессы не сливались во времени и чтобы сигнал, вызванный последующим стимулом, не попадал в рефракторный период от предыдущего раздражения.

В психофизиологии органов чувств принимают за пороговое такое значение стимула, вероятность восприятия которого равна 0,75 (правильный ответ о наличии стимула в 3/4 случаев его действия). При этом естественно, что более низкие значения интенсив­ности считаются подпороговыми, а более высокие - надпороговыми. Однако оказалось, что и в «подпороговом» диапазоне возможна четкая, дифференцированная реакция на сверхслабые (или сверхкороткие) раздражители. Так, если снизить интенсивность света настолько, что сам испытуемый уже не может сказать, видел ли он вспышку или нет, то по объективно регистрируемой кожно-тальванической реакции удается выявить четкий от­вет организма на данный сигнал. Оказывается, что восприятие таких сверхслабых сти­мулов происходит на подпороговом уровне.

111. Передача и преобразование. После преобразования в рецепторах энергии фи­зического или химического раздражителя в процесс нервного возбуждения начинается цепь процессов по преобразованию и передаче полученного сигнала. Цель их - донести до высших отделов мозга наиболее важную информацию о раздражителе и при­том в форме, наиболее удобной для надежного и быстрого его анализа.

Преобразования сигналов могут быть условно разделены на пространственные и временные. Среди пространственных преобразований сигналов можно,выделить изме­нение их масштаба в целом или искажение соотношения разных.пространственных частей. Так, в зрительной и соматосенсорной системах на корковом уровне происходит значительное искажение геометрических пропорций представительства отдельных частей тела или частей поля зрения. В зрительной коре резко расширено представительство центральной ямки сетчатки при относительной редукции периферии поля зрения («цик­лопический глаз»).

Временные преобразования информации сводятся в основном к ее сжатию в отдель­ные импульсные посылки, разделенные паузами или интервалами. В целом для всех анализаторов типичным является переход от тонической импульсации нейронов к фазическим пачечным разрядам нейронов.


Электрическая активность центров зрительной системы. ^ Электрические явления в сетчатке и зрительном нерве. При действии света в рецепторах, а затем и в нейронах сетчатки генерируются электрические потенциалы, отражающие параметры действующего раздражителя.

Суммарный электрический ответ сетчатки глаза на действие света называют электроретинограммой (ЭРГ). Она может быть зарегистрирована от целого глаза или непосредственно от сетчатки. Для этого один электрод помещают на поверхность роговой оболочки, а другой - на коже лица вблизи глаза либо на мочку уха. На электроретинограмме различают несколько характерных волн (рис. 14.8). Волна а отражает возбуждение внутренних сегментов фоторецепторов (поздний рецепторный потенциал) и горизонтальных клеток. Волна b возникает в результате активации глиальных (мюллеровских) клеток сетчатки ионами калия, выделяющимися при возбуждении биполярных и амакриновых нейронов. Волна с отражает активацию клеток пигментного эпителия, а волна d - горизонтальных клеток.

На ЭРГ хорошо отражаются интенсивность, цвет, размер и длительность действия светового раздражителя. Амплитуда всех волн ЭРГ увеличивается пропорционально логарифму силы света и времени, в течение которого глаз находился в темноте. Волна d (реакция на выключение) тем больше, чем дольше действовал свет. Поскольку в ЭРГ отражена активность почти всех клеток сетчатки (кроме ганглиозных), этот показатель широко используется в клинике глазных болезней для диагностики и контроля лечения при различных заболеваниях сетчатки.

Возбуждение ганглиозных клеток сетчатки приводит к тому, что по их аксонам (волокнам зрительного нерва) в мозг устрем ляются импульсы. Ганглиозная клетка сетчатки - это первый нейрон «классического» типа в цепи фоторецептор - мозг. Описано три основных типа ганглиозных клеток: отвечающие на включение (on-реакция), на выключение (off-реакция) света и на то и другое (on-off-реакция) (рис. 14.9).

Диаметр рецептивных полей ганглиозных клеток в центре сетчатки значительно меньше, чем на периферии. Эти рецептивные поля имеют круглую форму и концентрически построены: круглый возбудительный центр и кольцевая тормозная периферическая зона или наоборот. При увеличении размера светового пятнышка, вспыхивающего в центре рецептивного поля, ответ ганглиозной клетки увеличивается (пространственная суммация). Одновременное возбуждение близко расположенных ганглиозных клеток приводит к их взаимному торможению: ответы каждой клетки делаются меньше, чем при одиночном раздражении. В основе этого эффекта лежит латеральное, или боковое, торможение. Рецептивные поля соседних ганглиозных клеток частично перекрываются, так что одни и те же рецепторы могут участвовать в генерации ответов нескольких нейронов. Благодаря круглой форме рецептивные поля ганглиозных клеток сетчатки производят так называемое поточечное описание сетчаточного изображения: оно отображается очень тонкой мозаикой, состоящей из возбужденных нейронов

^ Электрические явления в подкорковом зрительном центре и зрительной зоны коры. Картина возбуждения в нейронных слоях подкоркового зрительного центра - наружного или латерального, коленчатого тела (НКТ), куда приходят волокна зрительного нерва, во многом сходна с той, которая наблюдается в сетчатке. Рецептивные поля этих нейронов также круглые, но меньшего размера, чем в сетчатке. Ответы нейронов, генерируемые в ответ на вспышку света, здесь короче, чем в сетчатке. На уровне наружных коленчатых тел происходит взаимодействие афферентных сигналов, пришедших из сетчатки, с эфферентными сигналами из зрительной области коры, а также через ретикулярную формацию от слуховой и других сенсорных систем. Эти взаимодействия обеспечивают выделение наиболее существенных компонентов сенсорного сигнала и процессы избирательного зрительного внимания.

Импульсные разряды нейронов наружного коленчатого тела по их аксонам поступают в затылочную часть полушарий большого мозга, где расположена первичная проекционная область зрительной зоны коры (стриарная кора, или поле 17). Здесь происходит значительно более специализированная и сложная, чем в сетчатке и в наружных коленчатых телах, переработка информации. Нейроны зрительной зоны коры имеют не круглые, а вытянутые (по горизонтали, вертикали или в одном из косых направлений) рецептивные поля небольшого размера. Благодаря этому они способны выделять из цельного изображения отдельные фрагменты линий с той или иной ориентацией и расположением (детекторы ориентации) и избирательно на них реагировать.

Мозг через орган зрения получает более 90% сенсорной информации. Фоторецепторы сетчатки глаза из всего спектра электромагнитных излучений регистрируют только волны длиной от 400 до 800 нм. Физиологическая роль глаза как органа зрения двояка. Во-первых, это оптический инструмент, собирающий свет от объектов внешней среды и проецирующий их изображения на сетчатку. Во-вторых, фоторецепторы сетчатки преобразуют оптические изображения в нервные сигналы, передаваемые в зрительную кору.

Орган зрения (рис. 10-1) включает глазное яблоко, соединённое через зрительный нерв с мозгом, защитный аппарат (в том числе веки и слёзные железы) и аппарат движения (поперечнополосатые глазодвигательные мышцы). Глазное яблоко. Стенка глазного яблока образована оболочками: в передней части расположены конъюнктива и роговица, в задней - сетчатка, сосудистая оболочка и склера. Полость глазного яблока занимает стекловидное тело. Кпереди от стекловидного тела расположен двояковыпуклый хрусталик. Между роговицей и хрусталиком находятся содержащие

Рис.10-1. Глазное яблоко. На врезке - зрачковый рефлекс

водянистую влагу перeдняя камера (между задней поверхностью роговицы и радужкой со зрачком) и задняя камера глаза (между радужкой и хрусталиком).

Защитный аппарат глаза. Длинные ресницы верхнего века предохраняют глаз от попадания пыли; мигательный рефлекс (моргание) осуществляется автоматически. Веки содержат мейбомиевы железы, благодаря которым края век всегда увлажнены. Конъюнктива - тонкая слизистая оболочка - выстилает как внутреннюю поверхность век, так и наружную поверхность глазного яблока. Слёзная железа выделяет слёзную жидкость, которая орошает конъюнктиву.

Сетчатка

Схема зрительного отдела сетчатки представлена на рис. 10-2. У заднего края оптической оси глаза сетчатка имеет округлое жёл- тое пятно диаметром около 2 мм (рис. 10-2, врезка). Центральная ямка - углубление в средней части жёлтого пятна - место наилучшего восприятия. Зрительный нерв выходит из сетчатки медиальнее жёлтого пятна. Здесь образуется диск зрительного нерва (слепое пятно), не воспринимающего свет. В центре диска имеется углубление, в котором видны питающие сетчатку сосуды. В зрительной сетчатке, начиная от самого наружного - пигментного (препятствует отражению и рассеиванию прошедшего через всю толщу сетчатки света, см. стрелку на рис. 10-2) и до самого внутреннего - слоя нервных волокон (аксонов ганглиозных нейронов) зрительного нерва, выделяют следующие слои.

Наружный ядерный слой содержит ядросодержащие части фоторецепторных клеток - колбочек и палочек. Колбочки концентрируются в области жёлтого пятна. Глазное яблоко организовано таким образом, что именно на колбочки падает центральная часть светового пятна от визуализируемого объекта. По периферии от жёлтого пятна расположены палочки.

Наружный сетчатый. Здесь осуществляются контакты внутренних сегментов палочек и колбочек с дендритами биполярных клеток.

Внутренний ядерный. Здесь располагаются биполярные клетки, связывающие палочки и колбочки с ганглиозными клетками, а также горизонтальные и амакринные клетки.

Внутренний сетчатый. В нём биполярные клетки контактируют с ганглиозными клетками, а амакринные клетки выступают в качестве вставочных нейронов.

Ганглиозный слой содержит тела ганглиозных нейронов.

Рис. 10-2 . Сетчатка (Б - биполярные клетки; Г - ганглиозные клетки; гор - горизонтальные клетки; A - амакринные клетки). На врезке - глазное дно

Общая схема передачи информации в сетчатке такова: рецепторная клетка биполярная клетка ганглиозная клетка и одновременно амакринная клетка - ганглиозная клетка аксоны ганглиозных клеток. Зрительный нерв выходит из глаза в области, видимой в офтальмоскоп как диск зрительного нерва (рис. 10-2, врезка). Фоторецепторные клетки (рис. 10-3 и 10-5В) - палочки и колбочки. Периферические отростки фоторецепторных клеток состоят из наружного и внутреннего сегментов, соединённых ресничкой.

Наружный сегмент имеет множество уплощённых замкнутых дисков (дупликатуры клеточных мембран), содержащих зрительные пигменты: родопсин (максимум поглощения - 505 нм) - в палочках: красный (570 нм), зелёный (535 нм) и синий (445 нм) пигменты - в колбочках. Наружный сегмент палочек и колбочек состоит из регулярных мембранных образований - дисков (рис. 10-3, справа). В каждом фоторецепторе имеется более 1000 дисков.

Внутренний сегмент заполнен митохондриями и содержит базальное тельце, от которого в наружный сегмент отходит 9 пар микротрубочек.

Центральное зрение, а также острота зрения реализуются колбочками.

Периферическое зрение, а также ночное зрение и восприятие подвижных объектов - функции палочек.

ОПТИКА ГЛАЗА

Глаз имеет систему линз с различной кривизной и различными показателями преломления световых лучей (рис. 10-4,1), включаю-

Рис.10-3. Фоторецепторы сетчатки. Наружные сегменты заключены в прямоугольник

щую четыре преломляющих среды между: О воздухом и передней поверхностью роговицы; О задней поверхностью роговицы и водянистой влагой передней камеры; О водянистой влагой передней камеры и хрусталиком; О задней поверхностью хрусталика и стекловидным телом.

Преломляющая сила. Для практических расчетов преломляющей силы глаза используют понятие о так называемом «редуцированном глазе», когда все преломляющие поверхности алгебраически складываются и рассматриваются как одна линза. В таком редуцированном глазу с единственной преломляющей поверхностью, центральная точка которой располагается на 17 мм кпереди от сетчатки, общая сила преломления составляет 59 диоптрий, когда хрусталик приспособлен для рассматривания далеких предметов. Преломляющая сила любых оптических систем выражается в диоптриях (D): 1 диоптрия равна преломляющей силе линзы с фокусным расстоянием в 1 метр.

Аккомодация - приспособление глаза к чёткому видению предметов, расположенных на различном расстоянии. Основная роль в процессе аккомодации принадлежит хрусталику, способному изменять свою кривизну. У молодых людей преломляющая сила хрусталика может увеличиваться от 20 до 34 диоптрий. При этом хрусталик изменяет форму от умеренно выпуклой до значительно выпуклой. Механизм аккомодации иллюстрирован на рис. 10-4,II.

Рис.10-4. ОПТИКА ГЛАЗА. I Глаз как оптическая система. II Механизм аккомодации. А - удалённый объект. Б - близкорасположенный объект. III Рефракция. IV Поля зрения. Прерывистой линией очерчено поле зрения левого глаза, сплошной линией - поле зрения правого глаза. Светлая (сердцевидная) область в центре - зона бинокулярного зрения. Окрашенные области слева и справа - поля монокулярного зрения)

При взгляде на удалённые предметы (А) ресничные мышцы расслабляются, поддерживающая связка растягивает и уплощает хрусталик, придавая ему дискообразную форму. При взгляде на близкие предметы (Б) для полной фокусировки необходима более значительная кривизна хрусталика, поэтому ГМК ресничного тела сокращаются, связки расслабляются, а хрусталик в силу своей эластичности становится более выпуклым. Острота зрения - точность, с которой виден объект; теоретически объект должен быть такого размера, чтобы мог простимулировать одну палочку или колбочку. Оба глаза действуют вместе (бинокулярное зрение) для передачи зрительной информации в зрительные центры коры больших полушарий, где зрительный образ оценивается в трёх измерениях.

Зрачковый рефлекс. Зрачок - круглое отверстие в радужной оболочке - очень быстро меняется в размере в зависимости от количества света, падающего на сетчатку. Просвет зрачка может изменяться от 1 мм до 8 мм. Это придаёт зрачку свойства диафрагмы. Сетчатка очень чувствительна к свету (рис. 10-1, врезка), слишком большое количество света (А) искажает цвета и раздражает глаз. Изменяя просвет, зрачок регулирует количество света, попадающего в глаз. Яркий свет вызывает безусловнорефлекторную вегетативную реакцию, замыкающуюся в среднем мозге: сфинктер зрачка (1) в радужной оболочке обоих глаз сокращается, а дилататор зрачка (2) расслабляется, в результате диаметр зрачка уменьшается. Плохое освещение (Б) заставляет оба зрачка расшириться, чтобы достаточное количество света могло достичь сетчатки и возбудить фоторецепторы.

Содружественная реакция зрачков. У здоровых людей зрачки обоих глаз одинакового размера. Освещение одного глаза ведет к сужению зрачка и другого глаза. Такая реакция называется содружественной реакцией зрачков. При некоторых заболеваниях размеры зрачков обоих глаз различны (анизокория).

Глубина фокуса. Зрачок усиливает чёткость изображения на сетчатке за счёт увеличения глубины резкости. При ярком свете зрачок имеет диаметр 1,8 мм, при средней дневной освещённос- ти - 2,4 мм, в темноте расширение зрачка максимально - 7,5 мм. Расширение зрачка в темноте ухудшает качество изображения на сетчатке. Между диаметром зрачка и интенсивностью освещения имеется логарифмическая зависимость. Максимальное увеличение диаметра зрачка увеличивает его площадь в 17 раз. Во столько же раз возрастает световой поток, поступающий к сетчатке.

Контроль фокусировки. Аккомодация хрусталика регулируется механизмом отрицательной обратной связи, автоматически приспосабливая фокусную силу хрусталика для наивысшей остроты зрения. Когда глаза фиксированы на отдалённом объекте и должны немедленно изменить фиксацию на ближний предмет, то в течение долей секунды происходит аккомодация хрусталика, обеспечивающая лучшую остроту зрения. При неожиданном изменении точки фиксации хрусталик всегда изменяет свою преломляющую силу в нужном направлении. Помимо вегетативной иннервации радужки (зрачковый рефлекс), для контроля фокусировки важны следующие моменты.

❖ Хроматическая аберрация. Лучи красного цвета фокусируются позже голубого, поскольку хрусталик преломляет голубые лучи

сильнее, чем красные. У глаз появляется возможность определять, какой из этих двух типов лучей находится в лучшем фокусе и посылать информацию к аккомодационному механизму с указанием делать хрусталик сильнее или слабее.

Сферическая аберрация. Пропуская только центральные лучи, зрачок устраняет сферическую аберрацию.

Конвергенция глаз при фиксации на близком предмете. Нервный механизм, вызывающий конвергенцию, одновременно сигнализирует об увеличении преломляющей силы хрусталика.

Степень аккомодации хрусталика постоянно, но незначительно колеблется дважды в секунду, что способствует более быстрому реагированию хрусталика для установки фокуса. Зрительный образ становится более чётким, когда осцилляции хрусталика усиливают изменения в нужном направлении; чёткость уменьшается, когда сила хрусталика изменяется в ненужном направлении.

Области мозговой коры, управляющие аккомодацией, взаимодействуют с нервными структурами, контролирующими фиксацию глаз на движущемся предмете. Окончательная интеграция зрительных сигналов осуществляется в полях 18 и 19 по Бродманну, затем двигательные сигналы передаются к ресничной мышце через мозговой ствол и ядра Эдингера-Вестфаля.

Точка ближайшего видения - способность ясно видеть в фокусе близлежащий предмет - отдаляется в течение жизни. В десятилетнем возрасте она приблизительно равняется 9-10 см и отдаляется до 83 см в возрасте 60 лет. Эта регрессия точки ближайшего видения возникает в результате уменьшения эластичности хрусталика и потери аккомодации.

Пресбиопия. Когда человек становится старше, хрусталик разрастается, становится толще и менее эластичным. Способность хрусталика изменять свою форму также уменьшается. Сила аккомодации падает с 14 диоптрий у ребенка до менее 2 диоптрий у человека в возрасте от 45 до 50 лет и до 0-в возрасте 70 лет. Таким образом, хрусталик утрачивает способность аккомодации, и это состояние называется пресбиопией (старческая дальнозоркость). Когда человек достигает состояния пресбиопии, каждый глаз остаётся с постоянным фокусным расстоянием; это расстояние зависит от физических характеристик глаз каждого отдельного человека. Поэтому пожилые люди вынуждены пользоваться очками с двояковыпуклыми линзами.

Аномалии рефракции. Эмметропия (нормальное зрение, рис. 10-4,III) соответствует нормальному глазу, если параллельные лучи от от- далённых предметов фокусируются на сетчатке, когда ресничная

мышца полностью расслаблена. Это значит, что эмметропический глаз может видеть все отдалённые объекты очень ясно и легко переходить (посредством аккомодации) на ясное видение близлежащих предметов.

Гиперметропия (дальнозоркость) может быть обусловлена слишком коротким глазным яблоком или в более редких случаях тем, что глаз имеет слишком малоэластичный хрусталик. В дальнозорком глазу продольная ось глаза короче, и луч от отдалён- ных предметов фокусируется за сетчаткой (рис. 10-4,III). Этот недостаток рефракции компенсируется дальнозорким человеком аккомодационным усилием. Дальнозоркий человек напрягает аккомодационную мышцу, рассматривая далёкие объекты. Попытки рассматривать близкие предметы вызывают чрезмерное напряжение аккомодации. Для работы с близкорасположенными предметами и чтения дальнозоркие люди должны пользоваться очками с двояковыпуклыми линзами.

Миопия (близорукость) представляет тот случай, когда ресничная мышца полностью расслаблена, и лучи света от далекого объекта фокусируются впереди сетчатки (рис. 10-4,III). Близорукость возникает либо вследствие слишком длинного глазного яблока, либо в результате большой преломляющей силы хрусталика глаза. Не существует механизма, посредством которого глаз смог бы уменьшить преломляющую силу хрусталика в условиях полностью расслабленной ресничной мышцы. Однако если объект находится рядом с глазами, то близорукий человек может использовать механизм аккомодации для чёт- кого фокусирования объекта на сетчатке. Следовательно, близорукий человек имеет ограничения только в отношении ясной точки «дальнего видения». Для ясного видения вдаль близорукому человеку необходимо использовать очки с двояковогнутыми линзами.

Астигматизм - неодинаковое преломление лучей в разных направлениях, вызванное различной кривизной сферической поверхности роговицы. Аккомодация глаза не в силах преодолеть астигматизм, потому что кривизна хрусталика при аккомодации изменяется одинаково. Для компенсации недостатков рефракции роговицы применяют специальные цилиндрические линзы.

Зрительное поле и бинокулярное зрение

Зрительное поле каждого глаза - часть внешнего пространства, видимого глазом. Теоретически оно должно быть круглым, но в действительности оно срезано в медиальном направлении носом и верхним краем глазницы! (рис. 10-4,IV). Составление карты

зрительного поля важно для неврологической и офтальмологической диагностики. Окружность зрительного поля определяют с помощью периметра. Один глаз закрывается, а другой фиксируется на центральной точке. Передвигая по меридианам в направлении к центру небольшую мишень, отмечают точки, когда мишень становится видимой, описывая таким образом зрительное поле. На рис. 10-4,IV центральные зрительные поля очерчены по касательной линии сплошными и пунктирными линиями. Белые участки за пределами линий являются слепым пятном (физиологическая скотома).

Бинокулярное зрение. Центральная часть зрительных полей двух глаз полностью совпадает; следовательно, любой участок в этом зрительном поле охватывается бинокулярным зрением. Импульсы, идущие от двух сетчаток, возбуждённых световыми лучами от объекта, на уровне зрительной коры сливаются в один образ. Точки на сетчатке обоих глаз, куда должно попадать изображение, чтобы оно воспринималось бинокулярно как единый предмет, называются корреспондирующими точками. Легкое надавливание на один глаз вызывает двоение в глазах вследствие нарушения соответствия сетчаток.

Глубина зрения. Бинокулярное зрение играет важную роль в определении глубины зрения, основываясь на относительных размерах объектов, их отражениях, их движении относительно друг друга. На самом деле глубина восприятия является также компонентом монокулярного зрения, но бинокулярное зрение добавляет чёткость и пропорциональность восприятия глубины.

ФУНКЦИИ СЕТЧАТКИ

Фоторецепция

В состав дисков фоторецепторных клеток входят зрительные пигменты, в том числе родопсин палочек. Родопсин (рис. 10-5А) состоит из белковой части (опсин) и хромофора - 11-цис-ретиналя, под действием фотонов переходящего в транс -ретиналь (фотоизомеризация). При попадании квантов света на наружные сегменты в фоторецепторных клетках последовательно происходят следующие события (рис. 10-5Б): активация родопсина в результате фотоизомеризации - каталитическая активация G-белка (G t , трансдуцин) родопсином - активация фосфодиэстеразы при связывании с G t a - гидролиз цГМФ цГМФ-фосфодиэстеразой - переход цГМФ-зависимых Na+-каналов из открытого состояния в закрытое - гиперполяризация плазмолеммы фоторецепторной клетки - передача сигнала на биполярные клетки.

Рис. 10-5. РОДОПСИН И АКТИВАЦИЯ ИОННЫХ КАНАЛОВ . А. Молекула опсина содержит 7 трансмембранных альфа-спиральных участков. Зачернённые кружки соответствуют локализации наиболее распрост- ранённых молекулярных дефектов. Так, при одной из мутаций глицин во втором трансмембранном участке в 90-м положении заменён на аспарагин, что приводит к врождённой ночной слепоте. Б. Трансмембранный белок родопсин и его связь с G-белком (трансдуцин) в плазмолемме фоторецепторной клетки. Возбуждённый фотонами родопсин активирует G-белок. При этом гуанозиндифосфат, связанный с α-СЕ G-белка, заменяется на ГТФ. Отщеплённые α-СЕ и β-СЕ действуют на фосфодиэстеразу и заставляют её превращать цГМФ в гуанозинмонофосфат. Это закрывает Na+-каналы, и ионы Na+ не могут попасть в клетку, что приводит к её гиперполяризации. R - родопсин; α, β и γ - СЕ G-белка; A - агонист (в данном случае кванты света); E - фермент-эффектор фосфодиэстераза. В. Схема палочки. В наружном сегменте расположена стопка дисков, содержащих зрительный пигмент родопсин. Мембрана дисков и клеточная мембрана разобщены. Свет (hv) активирует родопсин (Rh*) в дисках, что закрывает?+-каналы в клеточной мембране и снижает вход Na+ в клетку

Ионные основы фоторецепторных потенциалов

❖ В темноте Na +-каналы мембраны наружных сегментов палочек и колбочек открыты, и ток течёт из цитоплазмы внутренних сегментов в мембраны наружных сегментов (рис. 10-5В и 10- 6,I). Ток течёт также в синаптическое окончание фоторецептора, вызывая постоянное выделение нейромедиатора. Na+,K+-

Рис.10-6. ЭЛЕКТРИЧЕСКИЕ РЕАКЦИИ СЕТЧАТКИ. I. Ответ фоторецептора на освещение. II. Ответы ганглиозных клеток. Освещенные поля показаны белым. III. Локальные потенциалы клеток сетчатки. П - палочки; ГК - горизонтальные клетки; Б - биполярные клетки; AК - амакринные клетки; Г - ганглиозные клетки

насос, находящийся во внутреннем сегменте, поддерживает ионное равновесие, компенсируя выход Na+ входом K+. Таким образом, в темноте ионные каналы поддерживаются в открытом состоянии и потоки внутрь клетки Na+ и Ca 2 + через открытые каналы обеспечивают появление тока (темновой ток). О На свету, т.е. когда свет возбуждает наружный сегмент, Na + -каналы закрываются и возникает гиперполяризационный рецепторный потенциал. Этот потенциал, появившийся на мембране наружного сегмента, распространяется до синаптического окончания фоторецептора и уменьшает выделение синаптического медиатора - глутамата. Это немедленно приводит к появлению ПД в аксонах ганглиозных клетках. Таким обра-

зом, гиперполяризация плазмолеммы - следствие закрытия ионных каналов.

О Возврат к исходному состоянию. Свет, вызывающий каскад реакций, понижающих концентрацию внутриклеточного цГМФ и приводящих к закрытию натриевых каналов, уменьшает содержание в фоторецепторе не только Na+, но и Ca 2 +. В результате понижения концентрации Ca 2 + активируется фермент гуанилатциклаза, синтезирующая цГМФ, и в клетке растёт содержание цГМФ. Это приводит к торможению функций активированной светом фосфодиэстеразы. Оба этих процесса - повышение содержания цГМФ и торможение активности фосфодиэстеразы - возвращают фоторецептор в исходное состояние и открывают Na+-каналы.

Световая и темновая адаптация

Световая адаптация. Если человек длительное время находится в условиях яркого освещения, то в палочках и колбочках происходит превращение значительной части зрительных пигментов в ретиналь и опсин. Большая часть ретиналя превращается в витамин A. Всё это приводит к соответствующему снижению чувствительности глаза, называемому световой адаптацией.

Темновая адаптация. Напротив, если человек остаётся в темноте продолжительное время, то витамин A вновь превращается в ретиналь, ретиналь и опсин формируют зрительные пигменты. Всё это приводит к повышению чувствительности глаза - темновой адаптации.

Электрические ответы сетчатки

Различные клетки сетчатки (фоторецепторы, биполярные, горизонтальные, амакринные, а также дендритная зона ганглиозных нейронов) генерируют локальные потенциалы, но не ПД (рис. 10-6). Из всех клеток сетчатки ПД возникают только в аксонах ганглиозных клеток. Суммарные электрические потенциалы сетчатки - электроретинограмма (ЭРГ). ЭРГ регистрируют так: один электрод накладывают на поверхность роговицы, другой - на кожу лица. ЭРГ имеет несколько волн, связанных с возбуждением различных структур сетчатки и суммарно отражает интенсивность и длительность действия света. Данные ЭРГ могут использоваться в диагностических целях при заболеваниях сетчатки

Нейромедиаторы. Нейроны сетчатки синтезируют ацетилхолин, дофамин, Z-глутаминовую кислоту, глицин, γ-аминомасляную кислоту (ГАМК). Некоторые нейроны содержат серотонин, его аналоги (индоламины) и нейропептиды. Палочки и колбочки в

синапсах с биполярными клетками секретируют глутамат. Разные амакринные клетки выделяют ГАМК, глицин, дофамин, ацетилхолин и индоламин, оказывающие тормозные эффекты. Нейромедиаторы для биполярных и горизонтальных не идентифицированы.

Локальные потенциалы . Ответы палочек, колбочек и горизонтальных клеток являются гиперполяризующими (рис. 10-6,II), ответы биполярных клеток либо гиперполяризующие, либо деполяризующие. Амакринные клетки создают деполяризующие потенциалы.

Функциональные особенности клеток сетчатки

Зрительные образы. Сетчатка вовлечена в формирование трёх зрительных образов. Первый образ формируется под действием света на уровне фоторецепторов, превращается во второй образ на уровне биполярных клеток, в ганглиозных нейронах формируется третий образ. В формировании второго образа принимают также участие горизонтальные клетки, а в образовании третьего задействованы амакринные клетки.

Латеральное торможение - способ усиления зрительного контраста. Латеральное торможение - важнейший элемент деятельности сенсорных систем, позволяющий в сетчатке усиливать явления контраста. В сетчатке латеральное торможение отмечается во всех нейронных слоях, но для горизонтальных клеток оно является их основной функцией. Горизонтальные клетки латерально синаптически связаны с синаптическими участками палочек и колбочек и с дендритами биполярных клеток. В окончаниях горизонтальных клеток выделяется медиатор, который всегда оказывает тормозное влияние. Таким образом, латеральные контакты горизонтальных клеток обеспечивают возникновение латерального торможения и передачу правильного зрительного паттерна в мозг.

Рецептивные поля. В сетчатке на 100 млн палочек и 3 млн колбочек приходится около 1,6 млн ганглиозных клеток. В среднем на одну ганглиозную клетку конвергирует 60 палочек и 2 колбочки. Существуют большие различия между периферическими и центральными отделами сетчатки в количестве палочек и колбочек, конвергирующих на ганглиозные нейроны. На периферии сетчатки фоторецепторы, связанные с одной ганглиозной клеткой, образуют её рецептивное поле. Перекрытие рецептивных полей различных ганглиозных клеток позволяет повышать световую чувствительность при низком пространственном разрешении. По мере приближения к центральной ямке соотношение палочек и

Колбочек с ганглиозными клетками становится более упорядоченным, и на каждое нервное волокно приходится всего лишь несколько палочек и колбочек. В области центральной ямки остаются только колбочки (около 35 тыс.), и количество волокон зрительного нерва, выходящих из этой области, равно количеству колбочек. Это создаёт высокую степень остроты зрения по сравнению с относительно слабой остротой зрения на периферии сетчатки. На рис. 10-6,II показаны: слева - диаграммы рецептивных полей, освещённых по центру и по периферии круга, справа - диаграммы частоты ПД, возникающих в аксонах ганглиозных нервных клетках в ответ на освещение. При центральном освещении возбуждённое рецептивное поле вызывает латеральное торможение по периферии: на верхнем рисунке справа частота импульсов в центре намного больше, чем по краям. При засветке рецептивного поля по краям круга импульсация имеется по периферии и отсутствует в центре. Ганглиозные клетки разных типов. Ганглиозные клетки в состоянии покоя генерируют спонтанные потенциалы частотой от 5 до 40 Гц, на которые накладываются зрительные сигналы. Известно несколько типов ганглиозных нейронов.

W-клетки (диаметр перикариона <10 мкм, скорость проведения ПД 8 м/сек) составляют 40% от общего числа всех ганглиозных клеток. W-клетки имеют обширное рецептивное поле, они получают сигналы от палочек, передаваемые биполярными и амакринными клетками, и ответственны за сумеречное зрение.

X-клетки (диаметр 10-15 мкм, скорость проведения около 14 м/сек, 55%) имеют небольшое рецептивное поле с дискретной локализацией. Они ответственны за передачу зрительного образа как такового и все виды цветного зрения.

Y-клетки (диаметр >35 мкм, скорость проведения >50 м/сек, 5%) - самые крупные ганглиозные клетки - имеют обширное дендритное поле и получают сигналы из различных областей сетчатки. Y-клетки реагируют на быстрые изменения зрительных образов, быстрые движения перед глазами, быстрые изменения интенсивности света. Эти клетки мгновенно сигнализируют в ЦНС, когда в какой-либо части зрительного поля неожиданно появляется новый зрительный образ.

on- и off-ответы. Многие ганглиозные нейроны возбуждаются при изменениях интенсивности освещения. Наблюдается два типа ответов: on-ответ на включение света и off-ответ на выключение света. Эти разные типы ответов появляются соответ-

ственно от деполяризованных или гиперполяризованных биполяров.

Цветовое зрение

Характеристики цвета. Цвет имеет три основных показателя: тон (оттенок), интенсивность и насыщение. Для каждого из цветов существует дополнительный (комплементарный) цвет, который, будучи должным образом перемешан с исходным цветом, дает ощущение белого цвета. Чёрный цвет является ощущением, создаваемым отсутствием света. Восприятие белого цвета, любого цвета спектра и даже дополнительных цветов спектра может быть достигнуто смешением в различных пропорциях красного (570 нм), зелёного (535 нм) и голубого (445 нм) цветов. Поэтому красный, зелёный и голубой - первичные (основные) цвета. Восприятие цвета зависит в какой-то мере от цвета других объектов в поле зрения. Например, красный объект кажется красным, если поле освещается зелёным или голубым цветом, и этот же красный объект будет казаться бледно-розовым или белым, если поле будет освещаться красным цветом.

Цветовосприятие - функция колбочек. Существует три типа колбочек, каждый из которых содержит только один из трёх разных (красный, зелёный и синий) зрительных пигментов.

Трихромазия - возможность различать любые цвета - определяется присутствием в сетчатке всех трёх зрительных пигментов (для красного, зелёного и синего - первичные цвета). Эти основы теории цветного зрения предложил Томас Янг (1802) и развил Герман Гельмгольц.

НЕРВНЫЕ ПУТИ И ЦЕНТРЫ

Зрительные пути

Зрительные пути подразделяют на старую систему, куда относятся средний мозг и основание переднего мозга, и новую систему (для передачи зрительных сигналов непосредственно в зрительную кору, расположенную в затылочных долях). Новая система фактически отвечает за восприятие всех зрительных образов, цвета и всех форм осознаваемого зрения.

Основной путь к зрительной коре (новая система). Аксоны ганглиозных клеток в составе зрительных нервов и (после перекреста) в составе зрительных трактов достигают латеральных коленчатых тел (ЛКТ, рис. 10-7А). При этом волокна от носовой половины сетчатки в зрительном перекресте не переходят на другую сторо-

Рис.10-7. Зрительные пути (А) и корковые центры (Б). А. Области перерезки зрительных путей обозначены сточными буквами, а возникающие после перерезки дефекты зрения показаны справа. ПП - перекрест зрительного нерва. ЛКТ - латеральное коленчатое тело. КШВ - коленчато-шпорные волокна. Б. Медиальная поверхность правого полушария с проекцией сетчатки в области шпорной борозды

ну. В левом ЛКТ (ипсилатеральном глазу) волокна от носовой половины сетчатки левого глаза и волокна от височной половины сетчатки правого глаза синаптически контактируют с нейронами ЛКТ, аксоны которых образуют коленчато-шпорный тракт (зрительная лучистость). Коленчато-шпорные волокна проходят к первичной зрительной коре той же стороны. Аналогично организованы пути от правого глаза.

Другие пути (старая система). Аксоны ганглиозных нейронов сетчатки проходят также в некоторые древние области мозга: ❖ к надперекрестным ядрам гипоталамуса (контроль и синхронизация циркадных ритмов); ❖ в ядра покрышки (рефлекторные движения глаз при фокусировании объекта, активация зрачкового рефлекса); ❖ в верхнее двухолмие (контроль быстрых направленных движений обоих глаз); ❖ в ЛКТ и окружающие их области (контроль поведенческих реакций).

Латеральное коленчатое тело (ЛКТ) - часть новой зрительной системы, где оканчиваются все волокна, проходящие в составе зрительного тракта. ЛКТ выполняет функцию передачи информации

из зрительного тракта к зрительной коре, в точности сохраняя топологию (пространственное расположение) разного уровня путей из сетчатки (рис. 10-7Б). Другая функция ЛКТ заключается в контроле над количеством информации, поступающей к коре. Сигналы для осуществления ЛКТ входного контроля поступают в ЛКТ в виде обратной импульсации из первичной зрительной коры и из ретикулярной области среднего мозга.

Зрительная кора

Первичная зрительная воспринимающая область располагается на соответствующей стороне шпорной борозды (рис. 10-7Б). Подобно другим частям новой коры, зрительная кора состоит из шести слоев, волокна коленчато-шпорного пути заканчиваются преимущественно на нейронах слоя IV. Этот слой подразделяется на подслои, принимающие волокна от ганглиозных клеток типа Y и X. В первичной зрительной коре (поле 17 по Бродманну) и зрительной области II (поле 18) осуществляется анализ трёхмерного расположения объектов, величины объектов, детализация предметов и их окраски, движения объектов и т.д.

Колонки и полоски. Зрительная кора содержит несколько миллионов вертикальных первичных колонок, каждая колонка имеет диаметр от 30 до 50 мкм и содержит около 1000 нейронов. Нейронные колонки формируют переплетённые между собой полоски шириной в 0,5 мм.

Цветовые колонкообразные структуры. Среди первичных зрительных колонок распределяются вторичные области - колонкоподобные образования («цветовые сгустки»). «Цветовые сгустки» получают сигналы от прилежащих колонок и специфически активируются цветовыми сигналами.

Взаимодействие зрительных сигналов из двух глаз. Зрительные сигналы, поступающие в мозг, остаются раздельными до их вхождения в слой IV первичной зрительной коры. Сигналы из одного глаза входят в колонки каждой полоски, то же самое происходит с сигналами из другого глаза. В ходе взаимодействия зрительных сигналов зрительная кора расшифровывает расположение двух зрительных образов, находит их корреспондирующие точки (точки в одинаковых участках сетчатки обоих глаз) и приспосабливает расшифрованную информацию для определения расстояния до объектов.

Специализация нейронов. В колонках зрительной коры имеются нейроны, выполняющие совершенно определённые функции (например, анализ контраста (в том числе цветового), границ и направлений линий зрительного образа и др.).

СВОЙСТВА ЗРИТЕЛЬНОЙ СИСТЕМЫ Движения глаз

Наружные мышцы глазного яблока. Движения глаз осуществляют шесть пар поперечно-полосатых мышц (рис. 10-8А), координируемых головным мозгом посредством III, IV, VI пар черепных нервов. Если прямая латеральная мышца одного глаза сокращается, то прямая медиальная мышца другого глаза сокращается на такую же величину. Прямые верхние мышцы работают вместе и перемещают глаза назад, чтобы можно было смотреть вверх. Прямые нижние мышцы дают возможность смотреть вниз. Косая верхняя мышца вращает глаз вниз и наружу, а косая нижняя мышца - вверх и наружу.

О Конвергенция. Одновременное и содружественное движение обоих глаз позволяет, рассматривая близкие предметы, сводить их (конвергенция).

О Дивергенция. Рассматривание далёких объектов приводит к разведению зрительных осей обоих глаз (дивергенция).

О Диплопия. Поскольку основная часть зрительного поля бинокулярна, ясно, что необходима высокая степень координации движений обоих глаз для удержания зрительного образа на кор-

Рис.10-8. Наружные глазные мышцы. А. Глазные мышцы левого глаза. Б. Типы движений глаз

респондирующих точках обеих сетчаток и тем самым избежать двоения в глазах (диплопия).

Типы движений. Имеется 4 типа движений глаз (рис. 10-8Б).

О Саккады - неощущаемые быстрые скачки (в сотые доли секунды) глаза, прослеживающие контуры изображения. Саккадические движения поддерживают удержание изображения на сетчатке, что достигается периодическим смещением изображения по сетчатке, приводящим к активации новых фоторецепторов и новых ганглиозных клеток.

О Плавные следящие движения глаза за движущимся объектом.

О Конвергирующие движения - сведение зрительных осей навстречу друг другу при рассматривании объекта вблизи от наблюдателя. Каждый тип движений контролируется нервным аппаратом раздельно, но в конечном итоге все влияния заканчиваются на мотонейронах, иннервирующих наружные мышцы глаза.

О Вестибулярные движения глаза - регулирующий механизм, появляющийся при возбуждении рецепторов полукружных каналов и поддерживающий фиксацию взора во время движений головы.

Физиологический нистагм. Даже в условиях, когда субъект пытается фиксировать взглядом неподвижный предмет, глазное яблоко продолжает осуществлять скачкообразные и другие движения (физиологический нистагм). Другими словами, нервно-мышечный аппарат глаза берёт на себя функцию удержания зрительного образа на сетчатке, так как попытка удержать зрительный образ неподвижно на сетчатке приводит к его исчезновению из поля зрения. Именно поэтому необходимость постоянного удержания объекта в поле зрения требует постоянного и быстрого смещения зрительного образа по сетчатке.

КРИТИЧЕСКАЯ ЧАСТОТА МЕЛЬКАНИЙ. Глаз сохраняет следы световой стимуляции в течение некоторого времени (150-250 мс) после выключения света. Иными словами, глаз воспринимает прерывистый свет как непрерывный при определённых интервалах между вспышками. Минимальная частота следования световых стимулов, при которой происходит слияние отдельных ощущений мелькания в ощущение непрерывного света - критическая частота слияния мельканий (24 кадра в секунду). На этом явлении базируются телевидение и кино: человек не замечает промежутков между отдельными кадрами, так как зрительное ощущение от одного кадра ещё длится до появления другого. Тем самым создается иллюзия непрерывности изображения и его движения.

Водянистая влага

Водянистая влага непрерывно образуется и реабсорбируется. Баланс между образованием и реабсорбцией водянистой влаги регулирует объём и давление внутриглазной жидкости. Каждую минуту образуется от 2 до 3 мкл водянистой влаги. Эта жидкость вытекает между связками хрусталика и далее через зрачок в переднюю камеру глаза. Отсюда жидкость поступает в угол между роговицей и радужкой, проникает между сетью трабекул в шлеммов канал и изливается в наружные вены глазного яблока. Нормальное внутриглазное давление в среднем равняется 15 мм рт.ст. с колебаниями между 12 и 20 мм рт.ст. Уровень внутриглазного давления поддерживается постоянным с колебаниями ±2 мм и определяется сопротивлением оттоку из передней камеры в шлеммов канал при движении жидкости между трабекулами, в которых имеются проходы в 1-2 мкм.

При действии света в рецепторах, а затем и в нейронах сетчатки [?] генерируются электрические потенциалы, отражающие параметры действующего раздражителя. Суммарный электрический ответ сетчатки глаза на действие света называют электроретинограммой (ЭРГ). Она может быть зарегистрирована от целого глаза или непосредственно от сетчатки. Для этого один электрод помещают на поверхность роговой оболочки, а другой - на кожу лица вблизи глаза либо на мочку уха. На электроретинограмме различают несколько характерных волн (рис. 13.4).

Рис. 13.4. Электроретинограмма (по Гравиту).

a, b, c, d - волны ЭРГ; стрелками указаны моменты включения и выключения вспышки света.

Волна a отражает возбуждение внутренних сегментов фоторецепторов (поздний рецепторный потенциал) и горизонтальных клеток. Волна b возникает в результате активации глиальных (мюллеровские) клеток сетчатки ионами калия, выделяющимися при возбуждении биполярных и амакриновых нейронов. Волна с отражает активацию клеток пигментного эпителия, а волна d - горизонтальных клеток.

На ЭРГ хорошо отражаются интенсивность, цвет, размер и длительность действия светового раздражителя. Амплитуда всех волн ЭРГ увеличивается пропорционально логарифму силы света и времени, в течение которого глаз находился в темноте. Волна d (реакция на выключение) тем больше, чем дольше действовал свет. Поскольку в ЭРГ отражена активность почти всех клеток сетчатки (кроме ганглиозных), этот показатель широко используется в клинике глазных болезней для диагностики и контроля лечения при различных заболеваниях сетчатки.

Возбуждение ганглиозных клеток сетчатки приводит к тому, что по их аксонам (волокна зрительного нерва) в мозг устремляются импульсы. Ганглиозная клетка сетчатки - это первый нейрон «классического» типа в цепи фоторецептор - мозг. Описано три основных типа ганглиозных клеток: отвечающие на включение (on-реакция) и выключение света (off-peакция), а также на то и другое (on-off-реакция) (рис. 13.5). [!]

Рнс. 13.5. [!] Импульсация двух ганглиозных клеток сетчатки и их концентрические рецептивные поля. Тормозные зоны рецептивных полей заштрихованы. Показаны реакции на включение и выключение света при стимуляции световым пятном центра рецептивного поля и его периферии.

Диаметр рецептивных полей ганглиозных клеток в центре сетчатки значительно меньше, чем на периферии. Эти рецептивные поля имеют круглую форму и концентрически построены: круглый возбудительный центр и кольцевая тормозная периферическая зона или наоборот. При увеличении размера светового пятнышка, вспыхивающего в центре рецептивного поля, ответ ганглиозной клетки увеличивается (пространственная суммация).

Одновременное возбуждение близко расположенных ганглиозных клеток приводит к их взаимному торможению: ответы каждой клетки делаются меньше, чем при одиночном раздражении. В основе этого эффекта лежит латеральное, или боковое, торможение. Благодаря круглой форме рецептивные поля ганглиозных клеток сетчатки производят так называемое поточечное описание сетчаточного изображения: оно отображается очень тонкой мозаикой, состоящей из возбужденных нейронов.

С 1945 года электроретинография (ЭРГ) заняла особое место среди функциональных методов исследования в клинике глазных болезней . Наряду с общеизвестными физиологическими и психофизическими методами, с помощью которых получают данные о функции зрительного анализатора на всем протяжении зрительного пути от сетчатки до центральных отделов, ЭРГ применяют для количественной оценки функционального состояния нейронов сетчатки, более точного определения локализации патологического процесса.

ЭРГ представляет собой графическое отображение изменений биоэлектрической активности клеточных элементов сетчатки в ответ на световое раздражение. В фоторецепторах происходит трансформация световой энергии в нервное возбуждение. В рецепторах, а затем в нейронах сетчатки генерируется электрические потенциалы, возникающие при увеличении или уменьшении количества света.

Суммарный электрический ответ сетчатки на свет носит название электроретинограммы. Он может быть зарегистрирован от целого глаза или же непосредственно от сетчатки . Для записи электроретинограммы один электрод помещают на поверхности роговой оболочки, а другой прикладывают к коже лица вблизи глаза или на мочке (рис. 27).

Рис.27. Биоэлектрические явления в сетчатке. А -схема регистрации электроретинограммы (ЭРГ). 1-индифферентный электрод(прикладывается к коже лица вблизи глаза или на мочке), 2-активный электрод. Б-электроретинограмма. Р 1 –компонент зависящий от палочек; Р 2 –реакция биполярных клеток; Р 3 – тормозной процесс в рецепторных клетках.

В суммарной электроретинограмме различают несколько типов волн: (a, b, с, d) - рис. 28.

Рис 28. Электроретинограмма (по Граниту)

α - электроотрицательные колебания отражают суммацию потенциалов возникающих в фоторецепторах и горизонтальных клетках.

b - отражает изменение мембранных потенциалов глиальных клеток (мюллеровых клеток) сетчатки ионами калия при возбуждении биполярных и амакриновых нейронов.

с - отражает биопотенциалы пигментных клеток при «включении света» (on-эффект).

d - горизонтальных клеток фоторецепторов (и биополярных клеток) при «выключении света» (off-эффект) (она тем больше, чем длительнее действовал свет.

Общая ЭРГ отражает электрическую активность большинства клеточных элементов сетчатки и зависимость от количества здоровых функционирующих клеток. Каждый компонент ЭРГ генерируется различными структурами сетчатки. Результатом взаимодействия электрической активности нескольких процессов являются a- , b -, c -волны.

ЭРГ глаза человека содержит негативную а-волну , отражающую функцию фоторецепторов как начальную часть позднего рецепторного потенциала. На нисходящей части а-волны можно видеть две волночки очень маленькой латентности – ранние рецепторные потенциалы (РРП), отражающие цикл биохимических превращений родопсина. Волна а имеет двойное происхождение соответственно двум видам фоторецепторов. Более ранняя а 1 - волна связана с активностью фотопической системы сетчатки, а 2 -волна – со скотопической системой. Волна а переходит в позитивную b-волну , отражающую электрическую активность биполяров и клеток Мюллера с возможным вкладом горизонтальных и амакриновых клеток.


Волна b , или on-эффект , отражает биоэлектрическую активность в зависимости от условий адаптации, функции фотопической и скотопической системы сетчатки, которые представлены в позитивном компоненте волнами b 1 и b 2 . Большинство исследователей, связывая происхождение b-волны с активностью биполяров и клеток Мюллера, не исключают вклад ганглиозных клеток сетчатки. На восходящей части b-волны отмечается 5 - 7 волночек, называемых осцилляторными потенциалами (ОП), которые отражают взаимодействие клеточных элементов во внутренних слоях сетчатки, в том числе, амакриновых клеток.

При прекращении действия стимула (выключение света) регистрируется d-волна (off-эффект). Эта волна, последняя фаза ЭРГ, является результатом взаимодействия а-волны и компонента постоянного тока b-волны. Эта волна – зеркальное отражение а-волны – имеет фотопическую и скотопическую фазы. Она лучше регистрируется в случае преобладания в сетчатке колбочковых элементов. Таким образом, считается, что главным источником а-волны в ЭРГ позвоночных являются фоторецепторы, как колбочки, так и палочки.

Следующее медленное позитивное отклонение с быстрым (45 сек) и медленным (12 мин) пиками осцилляций названо с-волной , которая может быть выделена лишь при использовании стимулов, непрерывно предъявляемых, высокой интенсивности и большой длительности в темноадаптированном глазу. Это транспигментный потенциал эпителия, медленный позитивный потенциал внеклеточного тока, образующийся в связи с изменением концентрации калия, который выделен при введении микроэлектрода в субретинальное пространство. Регистрация этого медленного потенциала осуществляется непрямым способом с помощью электроокулографии. В настоящее время существует мнение, что позитивный компонент с- волны, генерируемой в слое пигментного эпителия, представляет собой разницу в гиперполяризации между апикальной и базальной мембранами, возникающий в процессе световой стимуляции, а негативный компонент регистрируется от клеток Мюллера. Так как с- волна ЭРГ сохраняется при отсутствии пигментного эпителия, ее происхождение связывают с активностью фоторецепторных клеток, субстанциями, отвечающими за световой пик (ЭОГ), трансмиттерами (мелатонин, допамин) фоторецепторов. Однако с- волна ЭРГ не может быть зарегистрирована без нормальных физических и биохимических связей между пигментным эпителием и наружными сегментами фоторецепторов, обновление дисков, фотохимических превращений зрительных пигментов и нормального питания сетчатки. Отделение пигментного эпителия от наружного сегмента фоторецепторов, отслойка сетчатки, приводит к функциональной несостоятельности сетчатки, сопровождающейся нерегистрируемой ЭРГ.

Существует ряд критериев, обуславливающих необходимость проведения электрофизиологических исследований в клинике глазных болезней:

1. Необходимость оценки функционального состояния сетчатки в тех случаях, когда определить зрительные функции обычным методом невозможно, а глазное дно не офтальмоскопируется, при помутнении сред глаза, гемофтальме. Проведение электроретинографических исследований особенно ценно для решения вопроса о целесообразности хирургического лечения заболевания.

2. Диагностика заболеваний сетчатки, так как в ряде случаев измерения ЭРГ являются патогномоничными симптомами заболевания.

3. Оценка глубины, распространенности, степени поражения сетчатки и его локализации.

4. Изучение звеньев патогенеза заболеваний сетчатки и зрительного нерва.

5. Дифференциальная диагностика заболеваний сетчатки и зрительного нерва различного генеза.

6. Диагностика начальных функциональных изменений сетчатки, предшествующих клиническим проявлениям заболевания (медикаментозная интоксикация, диабетическая ретинопатия, сосудистые нарушения и пр.)

7. необходимость определения прогноза течения патологического процесса, контроль за его эволюцией.