Аэрозоль - это что такое? Применение аэрозоля. Что такое аэрозоли

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Аэрозоли и спреи ОФС.1.4.1.0002.15

Взамен ст. ГФ XI «Аэрозоли»

Аэрозоли – лекарственная форма, представляющая собой растворы, эмульсии или суспензии действующих веществ, находящиеся под давлением пропеллента в герметичной упаковке (аэрозольный баллон), снабженной клапанно-распылительной системой, которая обеспечивает высвобождение лекарственного средства в виде дисперсии твердых или жидких частиц в газе, размер которых соответствует пути введения.

Спреи – это аэрозоли, не содержащие пропеллента, высвобождение содержимого которых происходит за счет давления воздуха, создаваемого с помощью механического распылителя насосного типа или при сжатии полимерной упаковки. По сравнению с аэрозолями спреи являются более грубодисперсной системой.

Аэрозоли представляют собой двухфазные (газ и жидкость) или трехфазные (газ, жидкость и твердое вещество или жидкость) системы. Двухфазные аэрозоли состоят из раствора действующего вещества в сжиженном пропелленте с добавлением растворителей, обеспечивающих растворимость действующих веществ. Трехфазные аэрозоли состоят из суспензии или эмульсии действующих веществ и пропеллента.

К трехфазным аэрозолям относятся пенные аэрозоли, которые представляют собой эмульсии, содержащие действующие вещества, поверхностно-активные вещества, водные или неводные растворители и пропелленты. Если пропеллент входит в состав дисперсной фазы (эмульсия типа «масло в воде»), при выпуске содержимого образуется стабильная пена.

Спреи представляют собой однофазные (жидкость) или двухфазные (жидкость и твердое вещество или жидкость) системы.

ОСОБЕННОСТИ ТЕХНОЛОГИИ

Вспомогательные вещества в составе аэрозолей и спреев (растворители, пропелленты, поверхностно-активные вещества, пленкообразователи, корригенты, антимикробные консерванты, антиоксиданты и др.) должны быть разрешены к медицинскому применению, обеспечивать оптимальные технологические характеристики лекарственной формы, быть совместимы с другими компонентами лекарственной формы и материалом упаковки. Вспомогательные вещества в составе аэрозолей для ингаляций не должны неблагоприятно влиять на функцию слизистой оболочки респираторного тракта.

Растворители: вода, спирт этиловый, жирные масла растительного и животного происхождения, минеральные масла, глицерин, этилацетат, хлористый этил, пропиленгликоль, димексид (диметилсульфоксид), полиэтиленоксиды с различными молекулярными массами, полисилоксановые соединения, этилцеллюлозы и др.

Поверхностно-активные вещества : полисорбаты (твины), спены, пентол, препарат ОС-20, эмульсионные воски, эмульгатор № 1, эмульгатор Т-2, спирты синтетические жирные первичные, триэтаноламиновые соли высших жирных кислот, олеиновая кислота и др.

Пленкообразователи: производные целлюлозы, акриловой кислоты и др.

Корригенты: сахар, лимонная кислота, сорбит, эфирные масла, тимол, ментол и др.

Антимикробные консерванты: метилпарагидроксибензоат, натрия пропилпарагидроксибензоат, этилпарагидроксибензоат, сорбиновая и бензойная кислоты, натрия бензоат, этоний, катамин АБ и др.

Антиоксиданты: бутилокситолуол, бутилоксианизол, витамин Е, аскорбиновая кислота и др.

Пропелленты (используются в аэрозолях): сжиженные газы, например, низкомолекулярные углеводороды парафинового ряда, такие как пропан и бутан, сжатые газы, такие как азот, азота закись, углерода диоксид, и галогенированные углеводороды (фреоны или хладоны). Для создания оптимальных физико-химических характеристик аэрозоля могут быть использованы смеси пропеллентов.

Аэрозоли и спреи помещают в упаковку, которая должна быть изготовлена из материала, инертного по отношению к содержимому упаковки: металла, стекла, пластмассы или их комбинаций. Стеклянные емкости аэрозолей должны быть защищены пластмассовым покрытием. Аэрозольные баллоны должны выдерживать внутреннее давление не менее 1 МПа при 20 ºС.

В зависимости от типа и предназначения упаковки должны быть снабжены распылительным устройством непрерывного действия (недозированные аэрозоли и спреи) или дозирующим распылительным устройством (дозированные аэрозоли и спреи). Материалы, используемые в производстве распылительных устройств (пластмасса, резина, металл), должны быть инертны по отношению к содержимому упаковки.

Распылительное устройство должно регулировать высвобождение содержимого упаковки во время использования: скорость и полноту высвобождения, размер частиц дисперсии, однородность дозирования. Клапанно-распылительное устройство аэрозолей должно обеспечивать герметичность упаковки в нерабочем состоянии.

ИСПЫТАНИЯ

В зависимости от лекарственной формы контроль качества аэрозолей и спреев включает в себя оценку давления в упаковке, герметичности упаковки, проверку клапана, определение процента выхода содержимого упаковки, средней массы дозы, количества доз в упаковке, однородности дозирования, однородности массы. Для неингаляционных аэрозолей и спреев, содержащих суспензию действующих веществ, определяют размер частиц, для ингаляционных аэрозолей – респирабельную фракцию.

Для аэрозолей и спреев, представляющих собой эмульсии и суспензии, допускается расслаивание в процессе хранения, однако они должны легко реэмульгироваться и ресуспендироваться при встряхивании для обеспечения равномерного распределения действующего вещества в лекарственном средстве.

Аэрозоли, предназначенные для ингаляций, должны соответствовать .

Давление в упаковке

Измерение давления проводят только для аэрозолей, в которых пропеллентами являются сжатые газы.

Упаковки выдерживают при комнатной температуре в течение 1 ч и манометром (класс точности 2.5) измеряют давление внутри упаковки, которое должно соответствовать требованиям фармакопейной статьи или нормативной документации, но не должно превышать 0,8 МПа (8 кгc/см 2).

Герметичность упаковки (для аэрозолей)

Метод 1 . Аэрозольный баллон без колпачка и распылителя или насадки полностью погружают в водяную баню при температуре (45 ± 5) °С не менее чем на 15 мин и не более чем на 30 мин для стеклянного баллона и не менее чем на 10 мин и не более чем на 20 мин для металлического. Толщина слоя воды над штоком клапана должна быть не менее 1 см. Не должно наблюдаться выделение пузырьков газа.

Метод 2 . Отбирают 12 ранее не использовавшихся аэрозольных упаковок. Каждую упаковку без колпачка и распылителя или насадки взвешивают с точностью до 0,001 г (m 0) и оставляют в вертикальном положении при комнатной температуре на срок не менее 3 сут. Затем аэрозольную упаковку опять взвешивают с точностью до 0,001 г (m 1).

Отмечают продолжительность испытания в часах (Т ).

Освобождают аэрозольную упаковку от содержимого в соответствии со способом, указанным в фармакопейной статье или нормативной документации. Взвешивают пустую упаковку с точностью до 0,001 г (m 2), рассчитывают среднюю массу содержимого с точностью до 0,001 г (m 3) по формуле:

n – количество аэрозольных упаковок, подвергшихся испытанию.

Рассчитывают скорость утечки содержимого упаковки в граммах в год (V m ) по формуле:

Рассчитывают скорость утечки содержимого упаковки в год в процентах от средней массы (V % ) по формуле:

Если не указано иначе в фармакопейной статье или нормативной документации, среднегодовая скорость утечки для 12 упаковок не должна превышать 3,5 % от средней массы содержимого упаковки и ни для одной из них не должна превышать 5,0 %. Если хотя бы для одной упаковки скорость утечки превышает 5,0 % в год, но ни для одной из упаковок не превышает 7,0 %, испытание на утечку проводят еще на 24 упаковках. Не более 2 упаковок из 36 могут иметь скорость утечки больше 5,0 % и ни для одной из них скорость утечки не должна превышать 7,0 % в год.

Если масса содержимого упаковки менее 15 г, средняя скорость утечки для 12 упаковок не должна превышать 525 мг/год и ни для одной из них не должна превышать 750 мг/год. Если хотя бы для одной упаковки скорость утечки превышает 750 мг/год (но не более 1,1 г/год), то испытание на утечку проводят еще на 24 упаковках. Не более 2 упаковок из 36 могут иметь скорость утечки больше 750 мг/год и ни для одной упаковки из 36 скорость утечки не должна превышать 1,1 г/год.

Выход содержимого упаковки

Испытание проводят для недозированных аэрозолей и спреев. Упаковку взвешивают вместе с распылителем или насадкой с точностью до 0,01 г (m 4). Нажатием на распылитель или насадку из упаковки удаляют все содержимое и снова взвешивают упаковку вместе с распылителем или насадкой с точностью до 0,01 г (m 5).

Выход содержимого в процентах (X ) вычисляют по формуле:

где m 6 – масса содержимого, указанная на этикетке, г (или полученная путем умножения номинального объема на плотность препарата).

Если не указано иначе в фармакопейной статье или нормативной документации, процент выхода содержимого упаковки должен составлять не менее 90 %, и результатом считают среднее арифметическое, полученное при определении процента выхода содержимого из 3 упаковок.

Однородность массы дозы

Испытание проводят для дозированных аэрозолей и спреев, содержащих растворы. Испытание для ингаляционных аэрозолей проводят в соответствии с (испытание «Однородность доставляемой дозы»).

Высвобождают одну дозу и отбрасывают ее. Спустя не менее 5 с встряхивают упаковку в течение 5 с, снова высвобождают и отбрасывают одну дозу. Повторяют указанную процедуру еще 3 раза, если иначе не указано в фармакопейной статье или нормативной документации. Взвешивают упаковку. Встряхивают упаковку в течение 5 с, высвобождают и отбрасывают одну дозу, снова взвешивают упаковку. По разности вычисляют массу высвободившейся дозы.

Испытание повторяют еще для 9 доз, указанных в фармакопейной статье или нормативной документации. Рассчитывают среднюю массу дозы и отклонения индивидуальных значений от средней массы дозы.

Лекарственное средство считают выдержавшим испытание, если не более 1 из 10 индивидуальных масс отклоняется от средней массы на величину, превышающую 25 %, при этом не более чем на 35 %. Если 2 или 3 результата выпадают из пределов 75 – 125 %, испытание повторяют с 20 другими дозами. Не более 3 из 30 значений могут выходить за пределы 75 – 125 %, и все значения должны быть в пределах от 65 до 135 %.

Количество доз в упаковке

Испытание проводят для дозированных аэрозолей и спреев.

Метод 1. Выпускают содержимое одной упаковки, высвобождая дозы с интервалом не менее 5 с. Регистрируют количество высвобожденных доз.

Допускается проводить испытание одновременно с определением однородности дозирования.

Метод 2. Упаковку взвешивают вместе с распылителем или насадкой с точностью до 0,01 г (m 2). Нажимая на распылитель или насадку, из упаковки выпускают все содержимое и снова взвешивают упаковку вместе с распылителем или насадкой с точностью до 0,01 г (m 5).

Среднее количество доз (n ср) в одной упаковке вычисляют по формуле:

где m ср – cредняя масса одной дозы, г.

Полученное в результате испытания количество доз должно быть не менее указанного на этикетке.

Размер частиц

Испытание проводят для неингаляционных аэрозолей и спреев, содержащих суспензию действующих веществ. Методики определения и требования к размеру частиц должны быть указаны в фармакопейной статье или нормативной документации.

Респирабельная фракция

Испытание проводят для ингаляционных аэрозолей в соответствии с .

Однородность дозирования

Испытание проводят для дозированных аэрозолей и спреев, содержащих эмульсии или суспензии. Испытание для ингаляционных аэрозолей проводят в соответствии с .

Контроль данного показателя должен проводиться не только для доз, высвобождаемых из одной упаковки, но и для доз, полученных из разных упаковок. Процедура отбора доз должна включать в себя отбор доз в начале, в середине и в конце использования препарата.

Испытание проводят с использованием аппарата или установки, способных к количественному удерживанию дозы, выпущенной из распылительного устройства. Встряхивают упаковку в течение 5 с, высвобождают и отбрасывают одну дозу. Спустя не менее 5 с снова встряхивают упаковку в течение 5 с, высвобождают и отбрасывают одну дозу. Повторяют указанную процедуру еще 3 раза, если иначе не указано в фармакопейной статье или нормативной документации. Через 5 с выпускают одну дозу в приемник аппарата. Содержимое приемника собирают путем последовательных промываний и определяют содержание действующего вещества в объединенных промывных водах.

Испытание повторяют еще для 9 доз, указанных в фармакопейной статье или нормативной документации.

Препарат выдерживает испытание, если 9 из 10 результатов находятся в пределах от 75 до 125 % от среднего значения, а все результаты находятся в пределах от 65 до 135 %. Если 2 или 3 результата выпадают из пределов 75 — 125 %, испытание повторяют с 20 другими дозами. Не более 3 из 30 значений могут выходить за пределы 75 – 125 %, и все значения должны быть в пределах от 65 до 135 %.

Для аэрозолей и спреев, содержащих несколько действующих веществ, тест на однородность дозирования должен быть выполнен для каждого вещества.

УПАКОВКА

В соответствии с требованиями .

МАРКИРОВКА

В соответствии с требованиями . В маркировке аэрозолей должны быть предусмотрены предупредительные надписи: «Хранить вдали от отопительной системы и прямых солнечных лучей», «Не вскрывать», «Предохранять от падений и ударов» и другие при необходимости.

ХРАНЕНИЕ

В соответствии с требованиями . В упаковке, обеспечивающей стабильность в течение указанного срока годности лекарственного препарата, в защищенном от света месте при температуре от 8 до 15°С, если нет других указаний в фармакопейной статье или нормативной документации.

Аэрозоли - это взвешенные в воздухе твердые или жидкие частицы размерами от 10 -7 до 10 -3 см. Твердые частицы, имеющие размер более 10 -3 см, относятся к пыли (см.). Аэрозоли из твердых частиц называются также дымами, а аэрозоли из жидких частиц - туманами. Аэрозоли классифицируют в зависимости от их природы (органические, неорганические), токсичности и , характера частиц (бактериальные) и других особенностей. Многие эрозолиа (токсические, радиоактивные, бактериальные и др.) могут оказывать вредное влияние на человека как непосредственно (вызывая различные заболевания), так и косвенно (уменьшая прозрачность , вызывая гибель зеленых насаждений).

Для индивидуальной защиты от вредных аэрозолей применяют специальные повязки, (см.), (см.) и костюмы. Для очистки воздуха от аэрозоли используют различные методы и технические устройства (фильтры, циклоны и др.). В связи с тем, что вредные аэрозоли попадают в организм в основном через органы дыхания и могут вызывать массовые заболевания, существенное значение имеют мероприятия по (см.) от промышленных и других загрязнений вредными веществами.

Аэрозоли широко применяют в различных областях медицины - аэрозольтерапия (см.), ингаляционная , и т. д. Аэрозоли получают с помощью специальных распылителей, генераторов, аэрозольных бомб и шашек.

Аэрозоли (греч. aer - воздух и нем. Sole, от лат. solutio - растворение, раствор) - дисперсные системы, состоящие из малых (10 -3 -10 -7 см) твердых или жидких частиц, взвешенных в воздухе или другой газообразной среде. Делятся на дымы (взвесь твердых частиц) и туманы (взвесь жидких частиц). Аэрозоли образуются в природных условиях (пыль, туман), при взрывах, размоле, шлифовке, химических реакциях, возгонке, создаются специально при помощи особых генераторов. Радиоактивные аэрозоли условно делят на «малоактивные» (активность частички менее 10 -13 кюри.), «полугорячие» (10 -13 -10 -10 кюри) и «горячие» (более 10 -10 кюри). По способу образования их подразделяют на естественные (образуются при распаде естественных радиоактивных веществ), бомбовые (при ядерных взрывах) и промышленные (в результате деятельности учреждений и предприятий, применяющих радиоактивные вещества и источники ионизирующего излучения). Около 90% аэрозолей в атмосфере имеют размер частиц менее 0,5 мк (чаще 0,005- 0,035 мк).

В воздухе рабочих помещений обычно преобладают частицы размером до 10 мк (40-90%- менее 2 мк).

При прочих равных условиях (степень токсичности и др.) гигиеническое значение аэрозолей определяется прежде всего степенью дисперсности (размером частиц) и весовой концентрацией (количеством частиц в единице объема воздуха). Характер и скорость оседания аэрозолей определяются метеорологическими условиями, размером и формой частиц, плотностью и др. Скорость оседания частиц, имеющих размеры более 5 мк, под влиянием силы тяжести (без учета турбулентности воздуха и влияния осадков) приближенно определяется законом Стокса. Частицы, имеющие размеры менее 5 мк, перемещаются в соответствии с законами броуновского движения и могут находиться в воздухе длительное время во взвешенном состоянии. 1 см 3 пылинок, диаметр которых равен 1 мк, имеет суммарную поверхность частиц порядка 6 м 2 . Этой огромной удельной поверхностью высокодисперсных аэрозолей во многом объясняется их высокая биологическая активность. Одно из важных свойств аэрозолей - наличие на их частицах электрических зарядов (положительных или отрицательных).

Аэрозоли находят широкое применение в медицине (ингаляционная иммунизация, аэрозольтерапия, дезинфекция, дезинсекция и дератизация, гигиенические и токсикологические исследования и т. п.), сельском хозяйстве (аэрозоли инсектифунгицидов и др.) и других областях науки и техники.

Для получения аэрозолей служат специальные распылители, генераторы, аэрозольные бомбы и аэрозольные шашки.

Наибольшее значение имеет действие токсических аэрозолей на органы дыхания. Как правило, аэрозоли с частицами значительных размеров (5-10 мк) задерживаются в бронхах, в альвеолы проникают только частицы меньших размеров. Частицы размером менее 0,2 мк мало задерживаются в альвеолах и почти полностью выводятся при выдохе. Несмотря на это, они могут представлять значительную опасность для здоровья. Аэрозоли, имеющие форму пластинок (слюда, полевой шпат) или волокон (стеклянное или минеральное волокно, текстильные волокна), могут проникать в альвеолы, имея большие размеры. Количество частиц аэрозолей, остающееся в легких, зависит от их особенностей и может достигать значительных величии (см. Пневмокониозы). Попадание в легкие «горячих» радиоактивных частиц может привести к очаговой некротизации клеток. По-видимому, возможно последующее злокачественное перерождение прилегающих тканей.

Для защиты от вредных аэрозолей применяются специальные респираторы (см.), противогазы (см.) и костюмы (см. Одежда защитная). Для очистки воздуха от аэрозолей применяется ряд специальных методов (см. Санитарная охрана атмосферного воздуха). См. также Пыль, Радиоактивные отходы.

Пены

Пены - ячеистые дисперсные системы, образованные скоплением пузырьков газа или пара, разделённых тонкими прослойками жидкости. Они относятся к типу Г/Ж. В отличие от газовых эмульсий пены - структурированные связнодисперсные системы. В большинстве случаев пены очень полидисперсны. Размеры газовых пузырей в них колеблются от долей миллиметров до нескольких сантиметров, благодаря чему пены занимают промежуточное положение между микрогетерогенными и макрогетерогенными системами.

Примерами пен являются пожаротушащие пены, пены, образуемые флотореагентами при обогащении руд ценных металлов, а также мыльная пена (или пена, образованная раствором любого другого моющего средства), Флотация грязевых частиц пузырьками пены является одним из важнейших компонентов моющего действия детергентов. Пены используются в ряде косметических средств, например, пена для бритья, пенки для масок, некоторые кремы и др.

Многие пищевые продукты являются пенами, как, например, взбитые сливки, муссы, суфле, кондитерские кремы. При варке варенья на нём образуется пена, стабилизированная растительными белками. Эти белки являются основным объектом питания микроорганизмов, вызывающих гниение, поэтому удаление пенки необходимо для длительного сохранения варенья. Аналогичная пена часто наблюдается при варке мясных бульонов. В этом случае она образована низкомолекулярными растворимыми белками, полипептидами или аминокислотами. Пены образуются и на многих напитках, содержащих поверхностно-активные вещества – на кофе, какао, пиве и т. п.

Применение в качестве пенообразователей полимеризующихся веществ – уретана, стирола и др. - приводит после полимеризации к полному отвердеванию дисперсионной среды. Таким способом получают пенопласты, поролоны, пенорезины, пенобетоны, обладающие высокими прочностными, тепло- и звукоизоляционными свойствами. Однако эти системы представляют собой самостоятельный класс дисперсных систем – твёрдые пены, относящиеся к типу Г/Т. Рассматриваемые в данном разделе жидкие пены являются промежуточным продуктом при получении твёрдых пен.

В фармации некоторые лекарственные средства применяются в виде пен, например, противоожоговые и ранозаживляющие средства кислородные коктейли.

Пены получают при интенсивном перемешивании или при барботировании пузырьков газа через жидкость. Важнейшим условием их получения является присутствие стабилизатора, называемого пенообразователем . В отсутствие пенообразователя пены с водной дисперсионной средой или вообще не образуются, или очень быстро разрушаются.

В качестве пенообразователей используются те же поверхностно-активные вещества, которые являются эмульгаторами эмульсий типа М/В, так как дисперсная фаза в пенах – воздух или, реже, другие газы, - принципи­ально гидрофобна. Стабилизация гликозидами (сапонин), таннинами, красителями и высокомолекулярными соединениями, особенно белковой природы, ведёт к образованию высоковязких и прочных пространственных структур в поверхностном слое пузырьков, сильно замедляющих утончение и разрыв пленки. Стабилизаторы этого типа называются по предложению Ребиндера сильными пенообразователями.



Кроме того, устойчивость пен определяется и другими свойствами системы, например, вязкостью жидкости.

Кинетическая устойчивость пен является их важной практической характеристикой. Обычно она определяется временем самопроизвольного разрушения столба пены на половине его высоты.

Ещё одной характеристикой пены является её кратность b , выражаемая отношением объёма пены к объёму исходного раствора пенообразователя V ж:

где V г – суммарный объём пузырьков газа, V г + V ж – объём пены.

Для «влажных» пен, состоящих из сферических пузырьков газа, разделённых сравнительно толстыми прослойками, b < 10, для «сухих» пен с тонкими прослойками b может достигать » 1000. В сухих пенах, где коэффициент заполнения пространства пузырьками воздуха превышает 74%, пузырьки деформируются и представляют собой не сферы, а полиэдрические ячейки. Эти ячейки разделяются стенками, состоящими из тонких прослоек жидкости с адсорбированными на них молекулами пенообразователя.

В пределе можно получить достаточно крупные пузырьки с настолько тонкими стенками, что они состоят фактически из двух упорядоченных слоёв молекул поверхностно-активного вещества, между которыми находится мономолекулярный слой воды. Из-за одинакового давления воздуха в соседних пузырьках эти плёнки являются идеально плоскими. Это очень удобно для изучения строения адсорбционных слоёв ПАВ, для экспериментального определения размеров их молекул и т. п. Подобные тонкие слои, называемые «чёрными» плёнками из-за практически полного отсутствия отражения света, могут быть получены и при создании больших мыльных пузырей. В этом случае стенки пузыря при отсутствии движения воздуха являются идеально сферическими. Тонкостенные мыльные пузыри, сохраняющиеся в течение нескольких минут, а иногда и часов, тоже являются удобным объектом для изучения свойств молекул ПАВ.

Часто образование пен является нежелательным, например. В химических аппаратах при перемешивании жидкой реакционной смеси. Аналогично нежелательная пена может возникать при перемешивании или встряхивании лекарственных растворов и т. д. В стиральных машинах из-за интенсивного перемешивания раствор детергента может практически весь превратиться в пену, что не даст проявляться главному механизму моющего действия – солюбилизации грязевых частиц. Кроме того, избыточная пена заполняет всё пространство над раствором, что мешает в работе. Для предотвращения образования ненужной пены применяют специальные вещества – пеногасители . Пеногасителями являются воски, жиры, некоторые масла, эфиры, высшие спирты и др., добавляемые в перемешиваемую жидкость. Уничтожить или хотя бы уменьшить уже образовавшуюся пену можно механическим удалением, термическим («пережигание») или ультразвуковым воздействием.

Аэрозоли - дисперсные системы, состоящие из мелких частиц, взвешенных в воздухе или другом газе.

Аэрозоли играют исключительно важную роль в метеорологии (атмосферные явления), в геологии (образование и разрушение почв из пыли, переносимой ветром - лёссовых почв, выветривание горных пород), в сельском хозяйстве (искусственное дождевание, борьба с вредителями), в экологии (проблемы очистки воздушной среды от загрязнений, как естественных – в результате пыльных бурь, извержений вулканов, - так и антропогенных), в авиации, а также во многих других областях деятельности.

В медицине аэрозоли используются для аэрозольной терапии, которая имеет ряд преимуществ перед традиционными формами применения лекарств. Главное из них заключается в высокой дисперсности и легкой подвижности частиц дисперсной фазы - факторов, значительно повышающих фармакологическую активность лекарств. К ним относятся средства для лечения простудных и других заболеваний дыхательных путей, симптоматические средства, облегчающие приступы бронхиальной астмы, эмфиземы легких и т. п.

Согласно принятой классификации аэрозоли подразделяют на следующие классы:

Туманы имеют жидкие частицы сферической формы, тогда как твёрдые частицы пылей и дымов могут иметь самые различные формы. Искусственно получаемые аэрозоли с жидкими частицами иногда называют английским термином «спрей». Часто, особенно вблизи промышленных предприятий – химических заводов, тепловых электростанций и др., - в воздухе образуется аэрозоль, содержащий одновременно и твёрдые, и жидкие частицы – смог (от англ. smoke – дым и fog – туман).

Подобно многим дисперсным системам, аэрозоли могут образовываться как путём конденсации, так и путём диспергирования.

Конденсационное образование аэрозолей является основным природным и техническим процессом образования высокодисперсных систем. В первую очередь следует упомянуть возникновение таких атмосферных аэрозолей, как туман и облака. Главным механизмом их образования является физическая конденсация водяного пара в результате пересыщения, которое происходит при значительном охлаждении воздуха. К природным конденсационным аэрозолям относятся и высокодисперсные дымы от лесных пожаров и от извержений вулканов. Следует помнить, что в чистом виде природные конденсационные дымы получаются редко, так как в большинстве случаев они находятся в смеси с пылями, образующимися при диспергировании различных веществ – горных пород, золы и т. п. Антропогенными конденсационными аэрозолями являются промышленные дымы, автомобильные, тракторные и др. выхлопы, дымы от костров и пожаров и др.

Аэрозоли, образующиеся в процессах диспергирования ,как правило, имеют сравнительно крупные частицы и обладают большей полидисперсностью, чем аэрозоли, образующиеся в процессах конденсации. Тем не менее, диспергационные методы получения аэрозолей, в особенности с жидкими частицами, используются достаточно широко. Это, например, разбрызгивание форсунками, распылителями и пульверизаторами жидкого топлива, ядохимикатов, лаков и красок, парфюмерных и косметических средств, лекарственных веществ в ингаляториях и т. п. Примером аэрозоля, образующегося природным распылением, может служить тончайшая водяная пыль, стоящая над водопадами, или возникающая при разбивании морских волн о берег, а также при уносе ветром брызг с гребней штормовых волн. Капли этой пыли при этом из-за испарения быстро теряют воду и в результате в морском воздухе присутствует аэрозоль с твёрдыми частичками морской соли. Именно этот аэрозоль придаёт целебные свойства приморским местностям. Аналогичный солевой аэрозоль имеется в воздухе соляных копей. По этой причине во многих местах мира в соляных шахтах устраиваются подземные санатории для лечения лёгочных заболеваний. Диспергационные аэрозоли могут возникать и как побочный продукт различных процессов, например, истирания дорожных покрытий и шин автомобилей, дробления твёрдых материалов, пересыпания порошков. Сюда же можно отнести пыли, образующиеся при военных и мирных взрывах, пожарах и т. п.

В настоящее время в большинстве областей народного хозяйства, в том числе и в медицине, широко используются специальные устройства для быстрого приготовления аэрозолей - аэрозольные упаковки (баллоны).

Аэрозольная упаковка состоит из баллона (металлического, стеклянного или пластмассового), клапана, сифонной трубки и распылительной головки, поверх которой обычно надевается предохранительный колпачок. Клапаны бывают постоянного действия и дозирующие; распылительные головки могут давать крупно- или мелкокапельные аэрозоли, а также пены. Баллон заполняется жидкой смесью, содержащей активные вещества (применительно к фармации - лекарственные), вспомогательные вещества и растворители. Вспомогательные вещества помогают получать распылённые смеси в виде аэрозоля, пены, плёнки и др. Как правило, это ПАВ различной природы. Кроме этой смеси в баллон под давлением закачиваются газы-распылители (пропелленты ).

В качестве пропеллентов применяются азот, N 2 O, СО 2 , легко сжижающиеся углеводороды, например, пропан и бутан и др. Длительное время во всём мире в подавляющее большинство аэрозольных баллонов в качестве пропеллентов вводились фреоны (хладоны).

Фреоны - это полностью или частично фторированные газообразные или жидкие производные углеводородов, часто содержащие также атомы Сl, реже Br. Они негорючи, взрывобезопасны, химически мало активны, практически безопасны для здоровья. Применяемый в каждой данной упаковке фреон обозначается шифром, представляющим собой трёхзначное число, соответствующее его брутто-формуле. Если первая цифра равна нулю, её обычно опускают. В этом шифре 1-я слева цифра - число атомов углерода минус 1; 2-я - число атомов водорода плюс 1; 3-я - число атомов фтора. Если фреон содержит атомы Cl, то их наличие в формуле не отражается, но при написании химической формулы оставшиеся свободными связи «насыщаются» хлором. Например, дифтордихлорметан CF 2 Cl 2 называется фреоном-12, тетрафтордихлорэтан C 2 F 4 Cl 2 - фреоном-114. Названия циклических фреонов включают букву С, например, перфторциклобутан C 4 F 8 - фреон-С318. Для получения медицинских аэрозолей наиболее часто применялись фреоны 11, 12, 114.

Фреоны являются хорошими пропеллентами, дающими очень тонкодисперсные аэрозоли. К тому же из-за лёгкости сжижения они очень технологичны. Однако из-за возможного разрушающего действия на озоновый слой атмосферы принята международная конвенция, запрещающая их применение. Поэтому принимаются меры для постепенного перехода от фреонов к другим, менее вредным для атмосферы пропеллентам.

Газовая дисперсионная среда вносит ряд своеобразных черт в свойства аэрозолей. Прежде всего, это их принципиальная лиофобность и отсутствие эффективных путей стабилизации. На поверхности аэрозольных частиц не образуется двойной электрический слой, служащий одним из главных факторов устойчивости в лиозолях. Поэтому аэрозоли агрегативно неустойчивы. Коагуляции или коалесценции в них препятствует, главным образом, малая частичная концентрация, а также энтропийный фактор и рассеяние частиц в пространстве воздушными потоками. При больших концентрациях, как, например. В дождевых облаках, капли тумана из-за частых столкновений коалесцируют, что приводят к пролитию дождя.

Вследствие большой разницы в плотностях дисперсной фазы и газовой среды аэрозоли седиментационно неустойчивы. Однако и в этом случае воздушные потоки – ветер, сквозняки, - препятствуют оседанию частиц или вновь поднимают в воздух уже осевшие пылевые частицы. В неподвижном воздухе оседание пылей происходит достаточно быстро. Самые мелкие, ультрамикрогетерогенные, частицы дымов из-за броуновского движения не оседают, и длительное время находятся в воздухе, пока не встретятся с какой-либо твёрдой либо жидкой поверхностью или не скоагулируют при столкновении с другой частицей.

В различных областях практической деятельности задача управления устойчивостью аэрозолей стоит очень остро. В одних случаях необходимо поддерживать стабильность аэрозольных систем, в других требуется обеспечить их эффективное разрушение. Например, необходимо разрушать (осаждать) тонкие, зависающие в воздухе пыли, образование которых почти всегда сопутствует процессу дробления, размола, пересыпания твёрдых материалов. Нередко такие аэрозоли представляют значительную опасность для здоровья людей, так как, проникая в лёгкие, вызывают лёгочные (силикоз, антракоз) и аллергические заболевания. Это относится и к лекарственному аэрозолю, возникающему в воздухе аптек при развешивании и фасовке порошков. Многие органические вещества, находящиеся в состоянии высокодисперсных аэрозолей, оказываются взрывоопасными, поскольку горение мгновенно захватывает огромную поверхность и сопровождается резким увеличением объёма. В частности, в аэрозольном состоянии становятся взрывоопасными даже такие обычные вещества, как мука, сахар, угольная пыль, пылевидные отходы обработки полимерных материалов, лекарственные вещества и т. п.

Значительное увеличение количества техногенных аэрозолей может заметно изменить условия образования облаков и за счёт этого - климат планеты. Содержащиеся в промышленных и выхлопных дымах оксиды серы и азота при попадании в облака образуют соответствующие кислоты, что приводят к выпадению так называемых кислотных дождей. Эти дожди являются причиной закисления почв и вод в озёрах и других водоёмах, болезней и гибели растений и животных как наземных, так и обитающих в воде. Отрицательно сказываются эти дымы и на здоровье человека, в особенности в крупных промышленных городах, где в воздухе постоянно висит более или менее концентрированный смог. Ещё одна область, где смог и кислотные дожди приносят большой, часто невосполнимый вред – это коррозия металлов и строительных материалов, от скорости которой зависит сохранность жилых и промышленных зданий, мостов и в особенности памятников архитектуры и скульптуры. За последние 100 – 150 лет состояние последних ухудшилось больше, чем за сотни и тысячи лет, прошедшие со времени их создания.

Концентрация аэрозолей в атмосфере увеличивается и после крупных извержений вулканов. Так, при катастрофическом извержении вулкана Кракатау в Индонезии в 1883 г. в атмосферу было выброшено около 18 км 3 твёрдых частиц всех размеров, наиболее мелкие из которых оставались во взвешенном состоянии более года. Вызванное этим потемнение атмосферы привело к тому, что в течение нескольких лет на всей Земле наблюдалось заметное похолодание, увеличилось число гроз и др. Аналогичные явления наблюдались в конце 1970-х гг. после извержения мексиканского вулкана Эль Чичон и после поджога нефтяных промыслов в Кувейте во время «войны в Заливе».

Большинство методов разрушения аэрозолей связано с интенсификацией процессов коагуляции, коалесценции и прилипания их частиц к различным поверхностям, а также процессов седиментации (путем изменения скорости и направления потока аэрозоля при инерционном осаждении в аппаратах типа «циклон»). Увлажнение воздуха в помещениях, например, с помощью декоративных фонтанчиков или пульверизаторов приводит к ускоренному слипанию аэрозольных и пылевых частиц с последующим выпадением в осадок. Аналогичный эффект наблюдается в атмосфере после дождя, когда воздух бывает наиболее чистым. Эффективным способом управления устойчивостью атмосферных аэрозолей является распыление в них концентрированных растворов гигроскопических веществ (например, CaCl 2) или твёрдых частиц (СO 2 , КJ). Вызванная этим конденсация водяного пара и рост капелек воды приводят к выпадению осадков. Очистка воздуха в помещениях производится обычно его увлажнением.

Аэрозоли обладают радом свойств, которые не наблюдаются в других дисперсных системах. К ним относятся термофорез, термопреципитация и фотофорез, а также особые электрические свойства.

Термофорез - движение частиц в поле температурного градиента, например, вблизи сильно нагретого металлического стержня или другого предмета. Причиной термофореза в случае крупных частиц является поток воздуха, обтекающий и закручивающий частицу, а в случае мелких - разность числа импульсов молекул, падающих на горячую и холодную сторону частицы, т. е. увеличение интенсивности броуновского движения. В результате термофореза частицы аэрозолей движутся в сторону от нагретого предмета и накапливаются в холодных участках системы, где может происходить их оседание на холодных поверхностях - термопреципитация .

Фотофорез - перемещение аэрозольных частиц под действием света. Различают положительный (движение от источника света) и отрицательный (движение к источнику света) фотофорез. Причины его во многом неясны, но есть предположение, что фотофорез вызывается неравномерным нагревом поверхности частиц, обусловленным различными прозрачностью, коэффициентом преломления и т. п. Возможно также местное нагревание задней стенки прозрачной частицы лучами, испытывающими полное внутреннее отражение.

Как уже упоминалось, двойной электрический слой на поверхности аэрозольных частиц не образуется. Однако вследствие адсорбции ионов из воздуха или электризации при трении о него частицы могут приобрести электрический заряд. В отличие от лиозолей он является случайной величиной и поэтому частицы одинаковых размеров и одного состава могут иметь различные по величине и даже по знаку заряды, к тому же изменяющиеся во времени, и характеризовать электрическое состояние частиц аэрозолей можно только статистическими методами. Заряд частиц обычно весьма мал и составляет всего несколько элементарных зарядов. Это обстоятельство позволило Р. Милликену в начале века измерить заряд электрона в опыте по седиментации капель масляного аэрозоля в вертикальном электрическом поле.

В электрическом поле аэрозоли способны к электрофорезу, что используется для разрушения их в электрофильтрах Коттрелла, действующих по принципу электрофореза. Частицам дыма иди тумана в постоянном электрическом поле высокого напряжения сообщается заряд при адсорбции на них ионов (обычно отрицательных), возникающих в коронном разряде. Приобретшие заряд частицы движутся к аноду, которым обычно является стенка электрофильтра, и разряжаются на нём, после чего осыпаются или стекают в специальный приёмник.

Явления, связанные с электрическими свойствами атмосферных аэрозолей, являются причиной грозовых явлений, а также помех в работе различных радиоустройств. При адсорбции ионов из воздуха капельки тумана в облаках приобретают заряд, который из-за большого числа капель и неравномерности распределения зарядов создаёт электрические поля напряжённостью до 100 В/см и более. В результате происходит пробой изолирующего слоя атмосферы между отдельными частями грозового облака или между облаком и землёй – молния. В сильно запылённых помещениях, например, в плохо проветриваемых шахтах или на мельницах возможна электризация угольных или мучных пылинок, которая усиливается трением этих диэлектрических частиц о воздух. Проскакивание искры в таких помещениях может явиться причиной взрыва.

Аэрозоли (греч. aēr + лат. sol раствор)

дисперсные системы, состоящие из газовой среды, в которой взвешены твердые или жидкие частицы. Широко распространены в природе (туманы, облака, дымы, почвенная, вулканическая, растительная и др.); образуются и в процессе производственной деятельности человека при получении, переработке и применении различных материалов (см. Пыль). По химическому происхождению различают А. органические, неорганические, смешанные, а по токсичности - токсичные и нетоксичные.

При взрывах, горении, ударах, размоле, трении, дроблении, сверлении, шлифовке и многих других процессах образуется дисперсная твердых веществ. жидкостей происходит при разбрызгивании, пульверизации и др. А. конденсации возникают вследствие охлаждения перенасыщенного . При термической обработке полимерных материалов, хлоридов металлов выделяются паро-газо-аэрозольные смеси, в состав которых входят твердые и жидкие частицы, газы и пары различных химических веществ. При охлаждении на воздухе паров металлов (свинца, меди, алюминия, ванадия, бериллия и др.) появляются А. конденсации металлов и их оксидов. Наиболее часто образуются А., дисперсная фаза которых содержит частицы, возникающие в результате измельчения и конденсации паров (выбросы металлургических предприятий, тепловых электростанций, котельных и др.). В зависимости размеров частиц различают следующие виды А.: 1) пыль (величина частиц дисперсной фазы более 10 мкм ); 2) облака (величина частиц 10-0,1 мкм ); 3) дымы (величина частиц 0,1-0,001 мкм ). Последние по своим размерам близки к молекулам и находятся в броуновском движении, благодаря которому велика вероятность столкновения частиц, в результате чего они коагулируют, приобретают больший размер и оседают. Чем выше степень дисперсности А. и больше число частиц в единице объема, тем быстрее идет с последующим осаждением. Полидисперсные А. коагулируют быстрее, чем изодисперсные.

Биологические А. образуются в результате испарения жидких, высыхания и попадания в воздух с пылью сухих экскрементов животных и человека, выделения животными и людьми микроорганизмов с выдыхаемым воздухом. Интенсивное образование биологического аэрозоля происходит в микробиологической промышленности при культивировании продуцентов - бактерий и грибов. Дисперсная фаза биологических А. содержит или их , продукты биосинтеза микробов, белок погибших микроорганизмов, и др.

Частицы размером до 5 мкм способны проникать в альвеолы и задерживаться в них (респирабельные фракции). Частицы величиной 10 мкм и более задерживаются в верхних дыхательных путях, бронхах и в альвеолы не заносятся. При попадании в А. способны вызывать ряд заболеваний: ларингиты, трахеиты, бронхиты, пневмомикозы, повреждения , кожи. Токсичные А. вызывают острые и хронические (см. Отравления профессиональные). Биологические А. могут вызывать инфекционные и аллергические заболевания.

Аэрозоли уменьшают прозрачность атмосферы и солнечной радиации к поверхности земли, угнетают растений, учащают туманы в промышленных центрах. Кроме того, они наносят экономический ущерб, вызывают порчу производственного оборудования, зданий и др.

Аэрозоли широко используются в различных сферах деятельности человека. В виде А. применяются некоторые , например для лечения болезней органов дыхания, для орошения ран, кожного покрова. В промышленности в аэрозольном состоянии используются топливо (уголь и нефть), катализаторы. С помощью А. осуществляются металлические покрытия (плазменное напыление), машин и других поверхностей. В сельском хозяйстве в виде А. применяют ядохимикаты для борьбы с насекомыми - переносчиками болезней животных и человека, с вредителями с.-х. культур; их распыляют с самолетов, с помощью пульверизаторов, аэрозольных бомб, шашек и др.

Методами исследования А. являются , ультрамикроскопия, электронная микроскопия. Наиболее важным в гигиенической практике является гравиметрический метод определения массовой концентрации частиц с помощью осаждения их на фильтрах путем просасывания запыленного воздуха с последующим взвешиванием и химическим анализом дисперсной фазы с целью установления содержания в ней свободной и связанной двуокиси кремния, ядовитых веществ и др. Гравиметрия, химический и определение степени дисперсности частиц по массе фракций позволяют дать достаточно полную оценку с точки зрения вредного действия А. на людей. При гигиенической характеристике А., кроме того, определяют растворимость частиц А. в биологических средах (сыворотке крови, желудочном соке и др.), электрический заряд частиц, удельную поверхность частиц. Установлены вредных веществ, находящихся в воздухе в виде А. (см. Предельно допустимые концентрации)

Библиогр.: Величковский Б.Т. Фиброгенные пыли. Особенности строения и механизма биологического воздействия. Горький, 1980; Грин X. и Лейн В. Аэрозоли - пыли, дымы, туманы, . с англ., Л. 1969, библиогр.; Детри Ж. должна быть чистой, пер. с франц., М., 1973; Хухрина Е.В. и Ткачев В.В. и их , М., 1968.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Аэрозоли" в других словарях:

    Современная энциклопедия

    Аэрозоли - [от аэро... и латинского sol(utio) раствор], мельчайшие твердые частицы или капельки жидкости, способные сохраняться во взвешенном состоянии в газовой среде (дымы, пыли, туманы, смог). Аэрозоли образуются в атмосфере в природных условиях, при… … Иллюстрированный энциклопедический словарь

    - (от аэро... и золи) дисперсные системы, состоящие из жидких или твердых частиц, находящихся во взвешенном состоянии в газообразной среде (обычно в воздухе). К аэрозолям относятся, напр., дымы, туманы, пыли, смог. В виде аэрозоля сжигают жидкое и… … Большой Энциклопедический словарь

    АЭРОЗОЛИ, ей, ед. аэрозоль, я, муж. (спец.). Газ или жидкость со взвешенными в них мельчайшими частицами. | прил. аэрозольный, ая, ое. А. препарат. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Дисперсные системы, состоящие из мелких твердых или жидких частиц, взвешенных в газовой среде (обычно в воздухе). А., дисперсная фаза которых состоит из капелек жидкости, называются туманами, а в случае твердой дисперсной фазы дымами; пыль… … Геологическая энциклопедия

    Неоднородные полидисперсные системы из взвешенных в газообразной среде частиц твёрдого или жидкого вещества размером 10 6 10 2 см. Различают А. конденсационные (дымы, туманы, смог) и диспергационные (пыль и жидкие частицы). А. могут быть… … Словарь черезвычайных ситуаций

    - (от аэро... и немец. Solum коллоидный раствор), пылевые или водяные частицы, находящиеся во взвешенном состоянии в газообразной среде (атмосфере). Повышение концентрации А. ведет к уменьшению приходящей солнечной радиации. Антропогенные А.… … Экологический словарь

    Аэрозоли - (aerosols): система твердых (дым) или жидких (туман) частиц, содержащихся во взвешенном состоянии в воздухе и имеющих малые скорости осаждения...

В жизни современного человека используется множество различных средств. Один из них - аэрозоль. Это что такое? Это специальная форма средств, применяемых в разных сферах жизни. Существует несколько их видов. Об этом будет сказано в статье.

Понятие

Аэрозоль - это дезодорант, баллончик с краской, лак для волос. В медицинской сфере они применяются для распыления антибиотика или антисептика. Аэрозоль - это ингаляторы для людей, больных астмой и прочими недугами дыхательных путей. Эти средства бывают и в бытовой химии, а также в виде дезинфектора. В такой форме выпускаются препараты от насекомых.

Женщины часто применяют разные средства по уходу за волосами. Одно из них - аэрозоль. Это лаки для волос, дезодоранты. Они очень удобны в использовании. Из этого можно сделать вывод, что аэрозолем называют мелкие частицы, висящие в газовой среде. К ним могут относиться как жидкости, так и твердые вещества. Эти компоненты настолько мелкие, что не падают на землю, поскольку в подвешенном состоянии они удерживаются воздушными потоками.

Виды систем

К популярным видам аэрозоля относят двухфазные системы. Они стали так называться из-за агрегатного состояния содержимого банки. Определить, какой в руках аэрозоль, инструкция поможет. Обычно перед применением его следует встряхивать. Это действие требуется для смешивания сжатого в баллоне газа и летучих веществ концентрата, находящегося в сжиженном состоянии.

Из баллона может выходить пена или туман. Такой вид часто применяется в косметике или средствах от ожогов. Существует растворимый аэрозоль. В нем активный компонент растворяется в пропелленте или подобном веществе. С высвобождением химическая добавка испаряется, и аэрозоль получается в виде тумана.

К последнему виду относят трехфазные системы. Они считаются самыми сложными аэрозолями, поскольку в них присутствуют три компонента разного состояния. С нажатием на кнопку выходит пена. Такие средства применяется в медицинской сфере.

Виды распыления

Применение аэрозолей может отличаться распылением. Оно делится на 3 вида:

  • с помощью форсунок - выделение жидкости под давлением;
  • вращающийся диск;
  • использование ультразвука.

Могут применяться и другие методы. Они используются в фирме пульверизатора, брумизатора и аэрозольного генератора.

Краски

Кроме медицины аэрозоль используется и в бытовой сфере. Он может входить в такое средство, как краска. Аэрозоль тогда представлен в виде красящего состава, находящегося в специальной упаковке. Его наносят распылением. У такого средства есть преимущества по сравнению с обычными акриловыми и прочими красками:

  • легкость нанесения;
  • не нужно приобретать дополнительный инструмент;
  • краситель не требуется размешивать, его можно сразу использовать;
  • краска быстро наносится и сохнет, она позволяет легко создать однотонную поверхность.

Имеет свои преимущества каждый аэрозоль. Инструкция по применению есть к каждому средству, поэтому ее нужно читать перед использованием. Там указаны правила нанесения средства, а также время воздействия. В инструкции обозначены правила безопасного использования.

Безопасность

Аэрозолем называют летучую смесь, которая распространяется в воздухе. Поэтому важно применять средство в проветриваемых помещениях. А еще лучше пользоваться ими на улице.

Так как вещества являются летучими, работать с ними надо в защитных очках и респираторе. Они считаются взрывоопасными, поэтому не нужно распылять его над огнем или пробивать баллон. Последствия от этого для человека могут быть неблагоприятны.

Сферы использования

Аэрозольная краска считается востребованной вещью. Она применяется для окрашивания ручных поделок. Тогда не будут видны следы от кисточки, да и оттенки у средства станут более насыщенные.

В виде аэрозоля выпускают освежитель воздуха в квартире и ванной комнате. Они включают сдерживающий компонент, масло и отдушку.

Есть такие системы, для которых не требуется человеческое вмешательство. Это касается автоматических освежителей. Их работа основана на том, что периодически аппарат подает сигнал на специальную трубку, которая соединяется с баллоном, выплескивая аромат. Эти освежители считаются удобными, необходимо лишь менять баллоны и контролировать заряд.

«Каметон»: правила использования

В лечении заболеваний носа и горла используются различные лекарства. Одним из них является «Каметон». Аэрозоль, инструкция по использованию которого несложная, имеет насадку, выполняющую распыление. К действующим компонентам относят хлоробутанол, камфору, ментол и эвкалиптовое масло. Также медикамент включает и дополнительные вещества.

«Каметон» следует применять при различных заболеваниях, вызванных вирусами и бактериями. Главным его назначением считается устранение боли. После распыления человек ощущает облегчение. Резь и жжение в гортани, появляющееся при глотании, больше не будут беспокоить. В составе присутствует хлопобутанол, который имеет антисептическое свойство. Его дополнением служит камфора, усиливающая кровоток в воспаленном участке, восстанавливающая поврежденные ткани.

Лекарство помогает устранить патогенные микроорганизмы и пораженном участке. Левоментон, который тоже есть в препарате, имеет охлаждающий эффект. Он освежает дыхание, облегчает симптомы заболевания. Эвкалиптовое масло тоже позволяет устранить воспалительные процессы. Оно нужно для регенерации тканей и слизистых оболочек. Бактерицидный эффект позволяет устранить микробы и вирусы.

У «Каметона» двойное применение. Его наносят на воспаленные миндалины и гортань. Средство распыляется в носовые ходы для лечения патологий. В первом случае насадку следует надеть на баллон, а затем нажать несколько раз. Если из наконечника выходит облако, то можно использовать лекарство. Его распыляют в нос 2 раза.

Вместе с этим надо сделать глубокий вдох. Повторяется процедура до 3 раз в сутки. Предварительно нос надо очистить с помощью промывания. В гортань средство распыляют по 2-4 дозы до 4 раз за день. Перерывы должны быть одинаковыми. Лекарство распыляют на вдохе. Потом надо выдохнуть через нос. После процедуры не следует кушать около 1 часа.

Аэрозоль используется во многих сферах жизни. Обычно люди называют им все, что распыляется из баллончика. Это верно, но не совсем. Аэрозоли применяются в косметической области, а также для дезинфекции рук, помещений, для распространения приятного аромата, для придания поверхности желаемого цвета и т. п. Любое из средств в баллоне надо использовать с соблюдением правил безопасности. Следует помнить, что их ни в коем случе нельзя давать детям, иначе это может привести к плачевным последствиям. Если же правильно применять аэрозоль, то он не принесет вреда.