Что воспринимают колбочки сетчатки глаза. Что такое палочки и колбочки сетчатки глаза

Основной отдел зрительного анализатора представляет сетчатка глаза. Именно здесь происходит восприятие световых электромагнитных волн, их трансформация в нервные импульсы и дальнейшая передача в зрительный нерв. Дневное (цветовое) и ночное зрение обеспечивают особыми рецепторами сетчатки. В совокупности они образуют фотосенсорный слой. В зависимости от формы подобные рецепторы называют палочки и колбочки.

Функции палочек и колбочек

В этой статье мы постарались более детально разобраться с вопросом, где находятся палочки и колбочки и разобрались, какие они выполняют функции.

Общие сведения

Гистологически на сетчатке глаза можно выделить 10 клеточных слоев. Светочувствительный слой состоит из специальных фоторецепторов, которые представляют собою особые образования нейроэпителиальных клеток. В них содержаться уникальные зрительные пигменты, которые поглощают световые волны определенной длины. Палочки и колбочки располагаются на сетчатке неравномерно. Основная часть колбочек чаще всего расположена по центру. Палочки в свою очередь обычно расположены на периферии. К дополнительным отличиям можно отнести:

  1. Палочки необходимы для обеспечения ночного зрения. Это означает, что они ответственны за восприятие света в условиях пониженного освещения. Соответственно, с помощью палочек человек сможет видеть предметы только в черно-белом изображении.
  2. Колбочки обеспечивают остроту зрения на протяжении всего дня. С их помощью каждый человек может видеть окружающий мир в цветном изображении.

Палочки чувствительны только к тем волнам, длина которых не превышает 500 нм. Однако, они остаются активными, даже когда фотонный поток понижен. Колбочки можно считать более чувствительными, и они способны воспринимать все цветовые сигналы. Однако, для их возбуждения порой может потребоваться свет с гораздо большей интенсивностью.

В темное время суток зрительную работу осуществляют палочки. В результате этого человек может хорошо видеть очертания предметов, но просто не сможет различить их цвет. При нарушении функции фоторецепторов могут возникнуть следующие проблемы и патологии зрения:

У людей с хорошим зрением в каждом глазу присутствует около миллиона колбочек. Их длина составляет 0,05 мм, а ширина 0,004 мм. Чувствительность к потоку лучей у них невелика. Однако, все они качественно будут воспринимать цветовую гамму, включая различные оттенки.

Фоторецепторы колбочки

Также они отвечают за возможность распознавания движущихся объектов, поэтому намного лучше реагируют на динамику освещения.

Строение колбочек

В колбочках присутствует три основных сегмента и перетяжка :

  1. Наружный сегмент. Он включает в себя чувствительный к свету пигмент йодопсин, который располагается в полудисках – складках плазматической мембраны. Этот участок фоторецепторных клеток постоянно обновляется.
  2. Перетяжка – образуется плазматической мембраной и служит для передачи энергии из внутреннего сегмента вовне. Если рассмотреть ее более детально тогда можно заметить, что она представляет так называемые реснички, осуществляющие эту связь.
  3. Внутренний сегмент. Это область активного обмена веществ. Здесь располагаются митохондрии – энергетическая база клеток. В этом сегменте также происходит интенсивное высвобождение энергии, которая нужна для осуществления зрительного процесса.
  4. Синаптическое окончание представляет собою область синапсов. Эти контакты между клетками в дальнейшем будут передавать нервные импульсы в зрительный нерв.

Трехкомпонентная гипотеза цветовосприятия

Уже многим известно, что в колбочках присутствует специальный пигмент, йодопсин, который позволяет воспринимать весь цветовой спектр. Согласно трехкомпонентной гипотезе цветного зрения существует три вида колбочек. В каждом определенном виде присутствует свой тип йодопсина, который воспринимает только свою часть спектра:

  1. L – тип содержит в себе пигмент под названием эритролаб и устанавливает длинные волны, а именно красно-желтую часть спектра.
  2. M – тип содержит пигмент хлоролаб и способен воспринимать средние волны, которые излучает желто-зеленая область спектра.
  3. S – содержит пигмент цианолаб и реагирует только на короткие волны, воспринимая синюю часть спектра.

Важно знать! На сегодняшний день многие ученые занимаются проблемами современной гистологии и отмечают неполноценность трехкомпонентной гипотезы цветовосприятия. Это связано с тем, что еще не найдено подтверждение существованию трех видов колбочек. Также еще не обнаружили пигмент, которому заранее присвоили название цианолаб.

Двухкомпонентная гипотеза цветовосприятия

Если верить этой гипотезе тогда можно понять, что все колбочки сетчатки содержат в себе эритолаб, а также хлоролаб. Поэтому они прекрасно могут воспринимать длинную и среднюю часть спектра. Короткую часть спектра в этом случае воспринимает пигмент родопсин, который содержится в палочках.

В пользу подобной теории может выступить тот факт, что люди, которые не способны воспринимать короткие волны спектра, одновременно страдают нарушениями зрения в условиях плохой освещенности. Подобная патология имеет название «куриная слепота».

Если рассмотреть палочки более детально, то можно заметить, что они имеют вид вытянутых цилиндров длиною около 0.06 мм. У взрослого человека в каждом глазу присутствует около 120 миллионов таких рецепторов. Они заполняют собою всю сетчатку концентрируясь при этом на периферии.

Фоторецептор палочки

Пигмент, который обеспечивает палочкам достаточно высокую чувствительность к свету имеет название родопсин или зрительный пурпур. На ярком свету подобный пигмент выцветает и полностью теряет свою способность. В этот момент он будет восприимчивым только к коротким световым волнам, которые составляют синюю область спектра. В темноте его цвет и качества постепенно восстанавливаются.

Строение палочек

Строение палочек практически ничем не отличается от строения колбочек. В них присутствует 4 основные части :

  1. Наружный сегмент с мембранными дисками включает в себя пигмент родопсин.
  2. Связывающий сегмент или ресничка обеспечивает надежный контакт между наружным и внутренним отделом.
  3. Внутренний сегмент включает в себя митохондрии. Здесь будет идти процесс выработки энергии.
  4. Базальный сегмент содержит нервные окончания и осуществляет передачу импульсов.

Чувствительность подобных рецепторов к воздействию фотонов позволяет преобразовывать световое раздражение в нервное возбуждение и передавать его в головной мозг. Таким образом осуществляется процесс восприятия световых волн человеческим глазом – фоторецепция.

Выводы

Как видите, человек является единственным из живых существ кто может воспринимать окружающий мир во всем многообразии красок. Сохранить уникальную способность на длительные годы поможет надежная защита органов зрения от вредных воздействий, а также профилактика нарушений зрения. Надеемся, что эта информация была полезной и интересной.

Острота зрения и чувствительность к освещенности.

В сетчатке глаза человека содержится один тип палочек (в них – ярко-красный пигмент родопсин ), относительно равномерно воспринимающих практически весь диапазон видимого спектра (от 390 до 760 нм) и три типа колбочек (пигменты – йодопсины ), каждый из которых воспринимает свет определенной длины волны. В результате более широкого спектра поглощения родопсина палочки восприни­мают слабый свет, т. е. необходимы в темноте, колбоч­ки – при ярком свете. Таким образом, колбочки являются аппаратом дневного зрения, а палочки – суме­речного.

Палочек в сетчатке содержится больше, чем колбочек (120 10 6 и 6-7 10 6 соответственно). Распределение палочек и колбочек тоже неодинаково. Тонкие, вытянутые палочки (размеры 50 х 3 мкм) равномерно распределены по всей сетчатке, кроме центральной ямки (желтого пятна), где располагаются почти исключительно удлиненные конические колбочки (60 х 1,5 мкм). Так как в центральной ямке колбочки очень плотно упакованы (15 10 4 на 1 мм 2), этот участок отличается высокой остротой зрения (еще одна из причин). Палочковое зрение отличается меньшей остротой, так как палочки расположены менее плотно (очередная причина) и сигналы от них подвергаются конвергенции (самая главная причина), но именно это обеспечивает высокую чувствительность, необходимую для ночного зрения. Палочки предназначены воспринимать информацию об освещенности и форме предметов.

Дополнительное приспособление к ночному видению. У некоторых видов животных (коров, лошадей, особенно кошек и собак) наблю­дается свечение глаз в темноте. Это обусловлено наличием особой отража­тельной перепонки (тапетум) , лежащей на дне глаза, впереди сосудистой оболочки. Перепонка состоит из волокон, пропитанных серебристыми кристаллами, отражающими попадающий в глаз свет. Свет вторично проходит через сетчатку и фоторецепторы получают дополнительную порцию фотонов. Правда, четкость изображения при таком отражении снижается, зато повышается чувствительность.

Цветовосприятие

Каждый зрительный пиг­мент поглощает часть падающего на него света и отража­ет остальную часть. Поглощая фотон света, зритель­ный пигмент меняет свою конфигурацию, при этом осво­бождается энергия, которая используется для осуществ­ления цепи химических реакций, что и приводит к возникновению нервного импульса.

У человека обнаружены три типа колбочек , в каждом из которых содержится свой зрительный пигмент – один из трех йодопсинов , максимально чувствительный к синему, зеленому или желтому свету. Электрический сигнал на выходе колбочек того или иного типа зависит от количества квантов, возбуждающих фотопигмент. Цветовое ощущение, очевидно, определяется соотношением между нервными сигналами от каждого из этих трех типов колбочек.

Может удивить кажущееся несоответствие между тремя типами колбочковых пигментов – синего, зеленого и желтого – и тремя «основными» цветами – синим, желтым и красным. Но хотя максимумы поглощения зрительных пигментов и не совпадают с тремя основными цветами, существенного противоречия в этом нет, поскольку свет любой длины волны (как и свет, состоящий из сочетания волн разной длины) создает уникальное соотношение между уровнями возбуждения цветовых рецепторов трех типов. Такое соотношение обеспечивает нервную систему, перерабатывающую сигналы от «трехпигментной» рецепторной системы, достаточной информацией для идентификации любых световых волн видимой части спектра.

У человека и у других приматов в цветовом зрении участвуют колбочки. Что в этом отношении можно сказать о палочках?

В сетчатке человека палочки имеются только за пределами центральной ямки и играют важную роль главным образом при слабой освещенности. Это объясняется двумя обстоятельствами. Во-первых, палочки более чувствительны к свету, чем колбочки (у родопсина очень широкий спектр поглощения ). Во-вторых, в их нервных связях сильнее выражена конвергенция, чем в связях колбочек, и это обеспечивает большую возможность суммации слабых стимулов. Поскольку у человека за цветовое зрение ответственны колбочки, при очень слабом освещении мы различаем лишь оттенки черного и серого. А так как в центральной ямке имеются в основном колбочки, мы лучше воспринимаем слабый свет, попадающий на участки вне центральной ямки – туда, где популяция палочек больше. Например, небольшая звездочка на небе кажется нам ярче, если ее изображение оказывается не в самой ямке, а в непосредственной близости от нее.

Исследования цветовосприятия у животных проводятся методом выработки дифференцировочных условных рефлексов – реакций на предметы, окрашенные в разные цвета, при обя­зательном выравнивании интенсивности яркости. Таким образом было установлено, что у собак и кошек цветное зрение раз­вито слабо, у мышей и кроликов отсутствует, лошади и крупный рогатый скот способны различать красный, зеленый, синий и желтый цвета; по-видимому, это относится и к свиньям.

Курсивом и особым форматированием выделен дополнительный материал.

В 1666г. Исаак Ньютон показал, что белый свет можно разложить на ряд цветных компонентов, пропустив его сквозь призму. Каждый такой спектральный цвет является монохроматическим, т.е. не способен больше разлагаться на другие цвета. К тому времени, однако, было уже известно, что художник может воспроизвести любой спектральный цвет (например, оранжевый), смешивая две чистые краски (например, красную и желтую), каждая из которых отражает свет, отличающийся по длине волны от данного спектрального цвета. Таким образом, открытый Ньютоном факт существования бесчисленного множества цветов и убежденность художников Возрождения, что любой цвет можно получить, комбинируя три основные краски – красную, желтую и синюю, казалось, противоречили друг другу.

Это противоречие в 1802г. разрешил Томас Юнг, предположивший, что рецепторы глаза избирательно воспринимают три основных цвета: красный, желтый и синий. Согласно его теории, цветовые рецепторы каждого типа в большей или меньшей степени возбуждаются светом с любой длиной волны. Иными словами, Юнг предположил, что ощущение «оранжевого цвета» возникает в результате одновременного возбуждения «красных» и «желтых» рецепторов. Таким образом, он сумел примирить факт бесконечного многообразия спектральных цветов с выводом о возможности их воспроизведения с помощью ограниченного числа красок.

Эту трихроматическую теорию Юнга подтвердили в XIX столетии результаты многочисленных психофизических исследований Джеймса Максвелла и Германа Гельмгольца, а также более поздние данные Уильяма Раштона.

Однако прямое доказательство существования трех типов цветовых рецепторов было получено лишь в 1964г., когда Уильям Б. Маркс (совместно с Эдвардом Ф. Мак Николом) изучил спектры поглощения одиночных колбочек из сетчатки золотой рыбки. Были обнаружены три типа колбочек, которые различались по спектральным пикам поглощения световых волн и соответствовали трем зрительным пигментам. Аналогичные исследования на сетчатке человека и обезьян дали схожие результаты.

Согласно одному из принципов фотохимии, свет, состоящий из волн разной длины, стимулирует фотохимические реакции пропорционально поглощению световых волн каждой длины. Если фотон не поглощается, то никакого влияния на молекулу пигмента он не оказывает. Поглощенный фотон передает часть своей энергии молекуле пигмента. Такой процесс переноса энергии означает, что волны разной длины будут возбуждать фоторецепторную клетку (что выражается в ее спектре действия) пропорционально тому, насколько эффективно пигмент этой клетки поглощает эти волны (т.е. в соответствии с ее спектром поглощения света).

Микроспектрофотометрическое изучение колбочек золотой рыбки позволило выявить три спектра поглощения, каждый из которых соответствует определенному зрительному пигменту с характерным для него максимумом. У человека кривая для соответствующего «длинноволнового» пигмента имеет максимум примерно при 560 нм, т. е. в желтой области спектра.

Существование трех типов колбочковых пигментов было подтверждено данными о существовании трех электрофизиологических типов пигмента со спектрами действия, соответствующими спектрам поглощения. Таким образом, в настоящее время трихроматическая теория Юнга может быть сформулирована с учетом данных о колбочковых пигментах.

Цветовое зрение было выявлено у представителей всех классов позвоночных. Трудно сделать какие-то обобщения о вкладе палочек и колбочек в цветовое зрение. Как правило, оно связано с наличием в сетчатке колбочек, однако в ряде случаев были обнаружены и «цветные» типы палочек. Например, у лягушки помимо колбочек имеются два типа палочек – «красные» (содержат родопсин и поглощают сине–зеленый свет) и «зеленые» (содержат пигмент, поглощающий свет синей части спектра). Из беспозвоночных способность различать цвета, в том числе и ультрафиолетовые лучи, хорошо развита у насекомых.

Задания:

1. Объясните, почему конвергенция должна повышать чувствительность глаза к слабому свету.

2. Объясните, почему ночью предметы видны лучше, если не смотреть прямо на них.

3. Объясните биологическую основу поговорки: «Ночью все кошки серые».

Строение палочек и колбочек

Палочки и колбочки весьма сходны по своему строению и состоят из четырех участков:

Наружный сегмент.

Это тот светочувствительный участок, где световая энергия преобразуется в рецепторный потенциал. Весь наружный сегмент палочек заполнен мембранными дисками, образованными плазматической мембраной и отделившимися от нее. В палочках число этих дисков составляет 600-1000, они представляют собой уплощенные мембранные мешочки и уложены наподобие стопки монет. В колбочках мембранных дисков меньше, и они представляют собой не обособленные складки плазматической мембраны. На поверхности мембранных дисков и складок, обращенной к цитоплазме находятся светочувствительные пигменты.

Перетяжка .

Здесь наружный сегмент почти полностью отделен от внутреннего впячиванием наружной мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой. Реснички содержат только 9 периферических дублетов микротрубочек: пара центральных микротрубочек, характерных для ресничек, отсутствует.

Внутренний сегмент.

Это область активного метаболизма; она заполнена митохондриями, доставляющими энергию для процессов зрения, и полирибосомами, на которых синтезируются белки, участвующие в образовании мембранных дисков и синтезе зрительного пигмента. В этом же участке расположено ядро.

Синаптическая область.

В этом участке клетка образует синапсы с биполярными клетками. Диффузные биполярные клетки могут образовывать синапсы с несколькими палочками. Это явление, называемое синаптической конвергенцией, уменьшает остроту зрения, но повышает светочувствительность глаза. Моносинаптические биполярные клетки связывают одну колбочку с одной ганглиозной клеткой , что обеспечивает большую по сравнению с палочками остроту зрения. Горизонтальные и амакриновые клетки связывают вместе некоторое число палочек или колбочек . Благодаря этим клеткам зрительная информация еще до выхода из сетчатки подвергается определенной переработке; эти клетки, в частности, участвуют в латеральном торможении.

Латеральное торможение одна из форм фильтрации в зрительной системе служит для усиления контраста.

Поскольку изменения силы или качества стимула во времени или пространстве, как правило, имеют для животного большое значение, в процессе эволюции сформировались нервные механизмы для «подчеркивания» таких изменений. Об усилении зрительного контраста можно получить представление, бегло взглянув на рисунок:

Кажется, что каждая вертикальная полоса несколько светлее у ее границы с соседней более темной полосой. И наоборот, там, где она граничит с более светлой полосой, она кажется темнее. Это оптическая иллюзия; на самом деле полосы по всей ее ширине закрашены равномерно (при хорошем качестве печати). Чтобы в этом убедиться, достаточно закрыть бумагой все полосы, кроме одной.

Как возникает эта иллюзия? Сигнал, передаваемый фоторецептором (палочкой, или колбочкой), возбуждает амакриновую клетку, которая тормозит передачу сигналов от соседних рецепторов, тем самым увеличивая четкость изображения («гасит блики»).

Первое физиологическое объяснение латерального торможения появилось в результате изучения фасеточного глаза мечехвоста. Хотя организация такого глаза гораздо проще, чем организация сетчатки позвоночных, между отдельными омматидиями у мечехвоста также существуют взаимодействия. Впервые это было обнаружено в середине 1950–х годов в лаборатории Х. К. Хартлайна в Рокфеллеровском университете. Сначала в темной комнате регистрировали электрическую активность отдельного омматидия при стимуляции его ярким лучом света, направленным только на этот омматидий. Когда включали также общий свет в комнате, эта дополнительная стимуляция не только не повышала частоту разрядов передаваемых омматидием, но наоборот приводила к ее снижению. Впоследствии было установлено, что причиной торможения (снижения частоты импульсации) данного омматидия было возбуждение окружающих его омматидиев рассеянным комнатным светом. Этот феномен, получивший название латерального торможения, позднее наблюдался и в зрительной системе других животных, а также в ряде сенсорных систем иного типа.

Механизм фоторецепции в палочках

Зададимся вопросом: а откуда в составе сетчатки нейроны: биполяры, ганглиозные клетки, а также горизонтальные и амакриновые клетки?

Вспомним, что сетчатка развивается как вырост переднего мозга. Следовательно – это нервная ткань. Парадоксально, но палочки и колбочки – это тоже нейроны, правда, видоизмененные. Причем, не просто нейроны, а спонтанно активные: без света их мембрана деполяризована, и они секретируют медиаторы, а свет вызывает торможение и гиперполяризацию мембраны! На примере палочек попытаемся разобраться, как это происходит.

Палочки содержат светочувствительный пигмент родопсин, находящийся на наружной поверхности мембранных дисков. Родопсин, или зрительный пурпур, представляет собой сложную молекулу, образующуюся в результате обратимого связывания белка опсина с небольшой молекулой поглощающего свет каротиноида – ретиналя (альдегидной формой витамина А – ретинола). Опсин может существовать в виде двух изомеров. Пока опсин связан с ретиналем, он существует в виде химически неактивного изомера, поскольку ретиналь, занимая определенный участок на поверхности его молекулы, блокирует реакционно-способные группы атомов.

Под воздействием света родопсин «выцветает» – разрушается на опсин и ретиналь. Этот процесс обратим. Обратный процесс лежит в основе темновой адаптации . В полной темноте требуется около 30 мин, чтобы весь родопсин был ресинтезирован и глаза (точнее – палочки) приобрели максимальную чувствительность.

Установлено, что даже один фотон способен вызывать выцветание родопсина. Освободившийся опсин изменяет свою конформацию, становится реакционно-способным и запускает каскад процессов. Рассмотрим эту цепь взаимообусловленных процессов последовательно.

В темноте:

1) родопсин в целости и сохранности, неактивен ;

2) в цитоплазме фоторецепторов работает фермент (гуанилатциклаза ), превращающий один из нуклеотидов – гуанилат (гуанозинмонофосфорная кислота – ГМФ) из линейной в циклическую форму – цГМФ (ГМФ → цГМФ) ;

3) цГМФ ответственен за поддержание открытого состояния Na + -каналов плазмалеммы фоторецепторов (цГМФ-зависимые Na + -каналы);

4) Na + -ионы свободно поступают в клетку – мембрана деполяризована, клетка в состоянии возбуждения ;

5) В состоянии возбуждения фоторецепторы секретируют медиатор в синаптическую щель.

На свету:

1) Поглощение света родопсином вызывает его выцветание , опсин изменяет свою конформацию и приобретает активность.

2) Появление активной формы опсина провоцирует активацию регуляторного G-белка (этот связанный с мембраной белок служит регуляторным агентом в клетках самого разного типа).

3) Активированный G-белок в свою очередь активирует в цитоплазме наружного сегмента фермент – фосфодиэстеразу . Все эти процессы протекают в плоскости мембраны диска.

4) Активированная фосфодиэстераза превращает в цитоплазме циклический гуанозинмонофосфат в обычную линейную форму (цГМФ → ГМФ) .

5) Уменьшение концентрации cGMP в цитоплазме приводит к закрытию Na + -каналов , пропускающих темновой ток, и мембрана гиперполяризуется .

6) В гиперполяризованном состоянии клетка не секретирует медиаторы .

Когда снова наступает темнота, под действием уже упоминавшейся гуанилатциклазы – происходит регенерация цГМФ. Повышение уровня цГМФ ведет к открытию каналов, и рецепторный ток восстанавливается до своего полного «темнового» уровня.

Модель фотопреобразования в палочке позвоночного.

Фотоизомеризация родопсина (Ро) приводит к активации G-белка, а он в свою очередь активирует фосфодиэстеразу (ФДЭ). Последняя затем гидролизует цГМФ в линейный ГМФ. Поскольку цГМФ поддерживает Na + -каналы в темноте открытыми, превращение на свету цГМФ в ГМФ вызывает закрытие этих каналов и уменьшение темнового тока. Сигнал об этом событии передается на пресинаптическую терминаль у основания внутреннего сегмента в результате распространения возникающего гиперполяризационного потенциала.

Таким образом, то, что происходит в фоторецепторах, прямо противоположно тому, что обычно наблюдается в других рецепторных клетках, где раздражение вызывает деполяризацию, а не гиперполяризацию. Гиперполяризация замедляет высвобождение из палочек возбуждающего медиатора, который в темноте выделяется в наибольшем количестве.

Столь сложный каскад процессов необходим для усиления сигнала. Как уже говорилось, поглощение даже одного фотона может быть зарегистрировано на выходе палочки. Фотоизомеризация одной молекулы фотопигмента вызывает лавинообразный каскад реакций, каждая из которых во много раз усиливает эффект предыдущей. Так, если одна молекула фотопигмента активирует 10 молекул G-белка, одна молекула G-белка активирует 10 молекул фосфодиэстеразы, а каждая молекула фосфодиэстеразы в свою очередь гидролизует 10 молекул цГМФ, фотоизомеризация одной молекулы пигмента сможет вывести из строя 1000 молекул цГМФ. Из этих произвольных, но скорее заниженных цифр нетрудно понять, как может усиливаться сенсорный сигнал с помощью каскада ферментативных реакций.

Все это позволяет объяснить ряд явлений, бывших ранее загадочными.

Во-первых, давно известно, что человек, адаптировавшийся к полной темноте, способен увидеть такую слабую вспышку света, при которой ни один рецептор не может получить более одного фотона. Как показывают расчеты, для ощу­щения вспышки нужно, чтобы в короткий промежуток времени около шести близко расположенных палочек были стимулированы фотонами. Теперь ста­новится понятно, как одиночный фотон может возбудить палочку и заставить ее генерировать сигнал достаточной силы.

Во-вторых, мы теперь можем объяснить неспособность палочек реагиро­вать на изменения освещенности, если свет уже достаточно ярок. По-видимо­му, чувствительность палочек столь высока, что при сильной освещенности, например при солнечном свете, все натриевые поры закрыты, и дальнейшее усиление света может не давать никакого дополнительного эффекта. Тогда говорят, что палочки насыщены.

Задание:

Один из законов теоретической биологии – закон органической целесообразности или закон Аристотеля – в настоящее время нашел объяснение в учении Дарвина о твор­ческой роли естественного отбора, проявляющейся в адаптивном характере биологической эволюции. Постарайтесь объяснить, в чем заключается адаптивность спонтанной активности фоторецепторов в темноте, учитывая, что на синтез и секрецию медиаторов затрачивается много энергии (АТФ).

Палочки и колбочки - светочувствительные рецепторы глаза, называемые также фоторецепторами. Их основная задача - преобразование светового раздражения в нервное. То есть, именно они превращают световые лучи в электрические импульсы, поступающие в мозг по , которые после определенной обработки становятся воспринимаемыми нами изображениями. У каждого вида фоторецепторов своя собственная задача. Палочки отвечают за световосприятие в условиях низкого освещения (ночное зрение). На колбочках лежит ответственность за остроту зрения, а также цветовосприятие (зрение днем).

Палочки сетчатки глаза

Данные фоторецепторы имеют форму цилиндра, длина которого составляет примерно 0,06 мм, а диаметр около 0,002 мм. Таким образом, подобный цилиндр действительно весьма похож на палочку. Глаз здорового человека содержит примерно 115-120 млн. палочек.

Палочку глаза человека можно разделить на 4 сегментарные зоны:

1 - Наружная сегментарная зона (включает мембранные диски, содержащие родопсин),
2 - Связующая сегментарная зона (ресничка),

4 - Базальная сегментарная зона (нервное соединение).

Палочки в высшей степени светочувствительны. Так, для их реакции, достаточно энергии 1 фотона (мельчайшей, элементарной частицы света). Данный факт очень важен при ночном зрении, что позволяет видеть при низком освещении.

Палочки не могут различать цвета, это, в первую очередь, связано с присутствием в них только одного пигмента - родопсина. Пигмент родопсин, называемый иначе зрительным пурпуром, благодаря включенным группам белков (хромофорам и опсинам) имеет 2 максимума светопоглощения. Правда, один из максимумов существует за гранью света, видимого человеческим глазом (278 нм – область уф-излучения), поэтому, наверное стоит называть его максимумом волнопоглощения. Но, второй максимум виден глазу - он существует на отметке 498 нм, расположенной на границе зелёного и синего цветового спектра.

Достоверно известно, родопсин, присутствующий в палочках, реагирует на свет много медленнее, чем йодопсин, содержащийся в колбочках. Потому, для палочек характерна слабая реакция на динамику световых потоков, и кроме того, они плохо различают движения объектов. И острота зрения не является их прерогативой.

Колбочки сетчатки глаза

Эти фоторецепторы, также получили свое название благодаря характерной форме, схожей с формой лабораторных колб. Длина колбочки составляет приблизительно 0,05 мм, диаметр ее в наиболее узком месте равен примерно 0,001 мм, а в самом широком - 0,004. Сетчатка здорового взрослого человека содержит около 7 млн. колбочек.

Колбочки имеют меньшую чувствительность к свету. То есть для возбуждения их деятельности потребуется световой поток, который в десятки раз более интенсивен, чем для возбуждения работы палочек. Но колбочки обрабатывают световые потоки значительно интенсивнее палочек, поэтому они лучше воспринимают и их изменение (к примеру, лучше различают свет при движении объектов, в динамике относительно глаза). Кроме того, они более четко определяют изображения.

Колбочки человеческого глаза, также включают 4 сегментарные зоны:

1 - Наружная сегментарная зона (включает мембранные диски, содержащие йодопсин),
2 - Связующая сегментарная зона (перетяжка),
3 - Внутренняя сегментарная зона (включает митохондрии),
4 - Зона синаптического соединения или базальный сегмент.

Причина вышеописанных свойств колбочек - это содержание в них специфического пигмента йодопсина. Сегодня выделены и доказаны 2 вида данного пигмента: эритролаб (йодопсин, чувствительный к красному спектру и длинным L-волнам), а также хлоролаб (йодопсин, чувствительный к зеленому спектру и средним M-волнам). Пигмент, который чувствителен к синему спектру и коротким S-волнам, пока не найден, хотя название за ним уже закрепилось – цианолаб.

Подразделение колбочек по видам доминирования в них цветового пигмента (эритролаба, хлоролаба, цианолаба) обусловлено трехкомпонентной гипотезой зрения. Существует, однако, и другая теория зрения - нелинейная двухкомпонентная. Ее приверженцы считают, что все колбочки, включают в себя эритролаб, и хлоролаб одновременно, а потому способны воспринимать цвета и красного, и зеленого спектра. Роль цианолаба, при этом, выполняет выцветший родопсин палочек. Эту теорию подтверждают и примеры людей, страдающих , а именно невозможностью различать синюю часть спектра (тританопия). Они так же испытывают затруднения с сумеречным зрением (


С помощью зрения человек знакомится с окружающим миром и ориентируется в пространстве. Несомненно, остальные органы также важны для нормальной жизнедеятельности, но именно с помощью глаз люди получают 90% всей информации. Око человека уникально по своему строению, оно способно не только распознавать объекты, но и различать оттенки. За цветовосприятие отвечают палочки и колбочки сетчатки. Именно они передают сведения, полученные из окружающей среды, в головной мозг.

Глаза занимают совсем немного места, но при этом отличаются содержанием огромного количества разнообразных анатомических структур, с помощью которых человек видит.

Зрительный аппарат практически напрямую связан с головным мозгом, при проведении особых офтальмологических обследований можно увидеть пересечение глазного нерва.

Око включает в себя такие элементы, как стекловидное тело, хрусталик, переднюю и заднюю камеры. Глазное яблоко визуально напоминает шарик и находится в выемке под названием орбита, она образует кости черепной коробки. Снаружи зрительный аппарат имеет защиту в виде склеры.

Оболочки глаза

Склера занимает примерно 5/6 всей поверхности ока, главное её предназначение – предотвратить травмирование органа зрения. Часть внутренней оболочки выходит наружу и постоянно контактирует с негативными внешними факторами, она называется роговицей. Данный элемент имеет ряд характеристик, благодаря которым человек четко различает предметы. К ним относят:

  • Светопропускная и преломляющая способности;
  • Прозрачность;
  • Гладкая поверхность;
  • Увлажненность;
  • Зеркальность.

Скрытая часть внутренней оболочки называется склера, она состоит из плотной соединительной ткани. Под ней располагается сосудистая система. Средний отдел включает в себя радужную оболочку, цилиарное тело и хориоидею. Также в её состав входит зрачок, представляющий собой микроскопическое отверстие, на которое не заходит радужка. Каждый из элементов имеет свои функции, необходимые для обеспечения бесперебойной работы органа зрения.

Строение сетчатки глаза

Внутренняя оболочка зрительного аппарата является важной частью мозгового вещества. В ее состав входят многочисленные нейроны, устилающие изнутри весь глаз. Именно благодаря сетчатке человек различает объекты, окружающие его. На ней происходит сосредоточение преломленных световых лучей и формируется четкое изображение.

Нервные окончания сетчатой оболочки переходят по зрительным фибрам, откуда по волокнам сведения передаются мозгу. Также здесь расположено небольшое пятнышко жёлтого цвета под названием макула. Оно находится в центре сетчатки и обладает самой большой способностью к визуальному восприятию. В макуле «проживают» палочки и колбочки, отвечающие за дневное и ночное зрение.

Колбочки и палочки – функции

Главное их предназначение – дарить человеку возможность видеть. Элементы выступают своеобразными преобразователями черно-белого и цветного зрения. Оба типа клеток относятся к категории светочувствительных рецепторов.

Колбочки глаза получили свое название благодаря форме, которая визуально напоминает конус. Они связывают между собой ЦНС и сетчатую оболочку. Основная функция – преобразовать световые сигналы из внешней среды в электроимпульсы, которые обрабатывает мозг. Палочки глаза отвечают за ночное зрение, в них также содержится пигментный элемент – родопсин, при попадании на него лучей света он обесцвечивается.

Колбочки

Фоторецептор по внешнему виду напоминает конус. В сетчатой оболочке сосредоточенно до семи миллионов колбочек. Однако, большое количество не означает гигантские параметры. Элемент имеет скромную длину (всего 50 мкм), ширина равняется четырем миллиметрам. Содержат пигмент йодопсин. Менее чувствительны, чем палочки, но быстрей реагируют на движения.

Строение колбочек

В состав рецептора входят:

  • Наружный элемент (мембранные диски);
  • Промежуточная часть (перетяжка);
  • Внутренний отдел (митохондрии);
  • Синаптическая область.

Трехкомпонентная гипотеза цветовосприятия

Существует три типа колбочек, каждая из которых содержит уникальную разновидность йодопсина и воспринимает определенную часть цветового спектра:

  • Хлоролаб (M-тип). Реагирует на желтый и зеленый оттенки;
  • Эритролаб (L-тип). Воспринимает желто-красную гамму;
  • Цианолаб (S-тип). Отвечает за реакцию на синюю и фиолетовую часть спектра.

Современные ученые, изучающие трехкомпонентную систему зрительного восприятия, отмечают ее несовершенство, поскольку научно не доказано существование трех типов колбочек. К тому же на сегодняшний день так и не обнаружен пигмент цианолаб.

Двухкомпонентная гипотеза цветовосприятия

Данная гипотеза утверждает, что в состав колбочек входит только эритолаб и хлоролаб, воспринимающие длинную и среднюю часть цветового спектра, соответственно. За короткие волны «отвечает» родопсин, являющийся главным компонентом палочек.

В пользу данного утверждения говорит то, что пациенты, не различающие синий спектр (т.е. короткие волны), страдают от проблем с ночным зрением.

Палочки

Данный рецептор приступает к работе, когда на улице или в помещении недостаточно света. По внешнему виду напоминают цилиндр. В сетчатке сосредоточенно примерно сто двадцать миллионов палочек. Этот большой элемент имеет скромные параметры. Он отличается небольшой длиной (в районе 0,06 мм) и шириной (примерно 0,002 мм).

Строение

В состав палочек входит четыре основных элемента:

  • Наружный отдел. Представлен в форме мембранных дисков;
  • Промежуточный участок (ресничка);
  • Внутренний сектор (митохондрии);
  • Тканевая основа с нервными окончаниями.

Рецептор реагирует на самые слабые световые вспышки, поскольку обладает высокой степенью чувствительности. В состав палочек входит уникальное вещество под названием зрительный пурпур. В условиях хорошей освещенности он распадается и чувствительно воспринимает синий зрительный спектр. Ночью или вечером вещество регенерируется, и око различает предметы даже в кромешной тьме.

Родопсин получил необычное наименование благодаря кроваво-красному оттенку, который на свету превращается в жёлтый, затем и вовсе обесцвечивается.

Особенности передачи световых импульсов

Палочки и колбочки воспринимают поток света и направляют его в центральную нервную систему. Обе клеточки способны плодотворно трудиться в дневное время суток. Главное отличие заключается в том, что колбочки обладают более высокой светочувствительностью, чем палочки.

За передачу сигнала ответственны интернейроны, к каждой клеточке прикреплено одновременно несколько рецепторов. При соединении ряда палочек, повышается степень чувствительности зрительного аппарата. В офтальмологии явление носит название «конвергенция». Благодаря ей человек может одновременно осматривать сразу несколько зрительных полей и улавливать малейшие колебания световых потоков.

Способность к восприятию цветов

Оба фоторецептора требуются глазам для различения дневного и ночного зрения, выявления цветных изображений. Уникальное строение ока дарит человеку огромное количество возможностей: видеть в любое время суток, воспринимать большую площадь окружающего мира и т.д.

Также глаза человека имеют необычную способность – бинокулярное зрение, значительно расширяющее обзор. Палочки и колбочки принимают участие в восприятии всего цветового спектра, поэтому в отличие от животных, люди различают все оттенки окружающего мира.

Симптомы поражения палочек и колбочек

При развитии в организме недуга, затрагивающего главные рецепторы сетчатки, наблюдаются следующие признаки:

  • Падение остроты зрения;
  • Дальтонизм;
  • Появление ярких бликов перед глазами;
  • Проблемы с ночным видением;
  • Сужение зрительного обзора.

Часть патологий имеет специфическую симптоматику, поэтому не составит труда их диагностировать. К ним относится дальтонизм и «куриная слепота». Для выявления остальных заболеваний потребуется пройти дополнительное медицинское обследование.

Методы диагностики при поражении палочек и колбочек

При подозрении на развитие патологических процессов в зрительном аппарате пациента отправляют на следующие исследования:

  • Офтальмоскопия. Используют для анализа состояния глазного дна;
  • Периметрия. Изучает зрительные поля;
  • Компьютерная рефрактометрия. Применяют для выявления таких недугов, как миопия, гиперметропия или астигматизм;
  • Ультразвуковое обследование;
  • Диагностика восприятия цветов. Для этого чаще всего окулисты используют тест Ишихара;
  • Флуоресцентная агиография. Помогает визуально оценить состояние сосудистой системы.

Глаз человека — на самом деле, достаточно сложный орган. Он состоит из множества элементов, где каждый выполняет определенную функцию.

Колбочки

Рецепторы, реагирующие на свет. Свою функцию они осуществляют за счет специального пигмента. Йодопсин – многокомпонентный пигмент, состоящий из:

  • хлоролаб (отвечает за чувствительность к зелено-желтому спектру);
  • эритролаб (красно-желтый спектр).

На данный момент это два вида изученных пигментов.

У людей со стопроцентным зрением существует порядка 7 миллионов колбочек. Они очень маленькие в размере, меньше палочек. Длина колбочек — около 50 мкм, а в диаметре — до 4 мкм. Надо сказать, что колбочки менее чувствительны к лучам, нежели палочки. Приблизительно эта чувствительность меньше в сто раз. Однако с их помощью глаз качественнее воспринимает резкие движения.

Строение

Колбочки включают четыре области. Наружный участок имеет полудиски. Перетяжка — связующий отдел. Внутренний, как и с палочками, включает метохондрии. И четвертая часть – синаптическая область.

  1. Наружный участок весь заполняют мембраны полудиски, которые образуются плазматической мембраной. Это своеобразные микроскопические складки плазматической мембраны, которые полностью покрыты чувствительным пигментом. Благодаря фагоцитозу полудисков, а также регулярному формированию новых в теле рецептора, часто обновляется наружная область столбика. Именно в этой части выполняется выработка пигмента. Приблизительно в сутки осуществляется обновление восьмидесяти полудисков. А полноценное восстановление всех требует порядка 10 дней.
  2. Связующий отдел практически отделяет наружный участок от внутреннего за счет выпячивания мембраны. Эта связь налаживается за счет пары ресничек и цитоплазму. Они переходят от одного участка в другой.
  3. Внутренняя часть – область, в которой происходит активный обмен веществ. Метохондрии, заполняющие эту часть, доставляют энергию для зрительных функций. Здесь же находится ядро.
  4. Синаптическая часть принимает процесс образования синапса с биполярными клетками.

За остроту зрения отвечают моносинаптические биполярные клетки, которые связывают колбочку и ганглиозную клетку.

Виды

Всего известно три типа колбочек. Типы определяются исходя из чувствительности к волнам спектра:

  1. S -тип. Чувствительны к коротковолновому спектру. Сине-фиолетовый цвет.
  2. М-тип. Такие улавливают средние волны. Это желто-зеленые цвета.
  3. L -тип. Эти рецепторы улавливают длинные волны красно-желтого цвета.

Палочки

Один из фоторецепторов сетчатки. Выглядят они как небольшие клеточные отростки. Название эти элементы получили из-за особой формы — цилиндрической. Всего сетчатку заполняют около ста двадцати миллионов палочек. По размерам они крайне малы. В диаметре не превышают 0,002 мм, а их длина — порядка 0,06 мм. Именно они преобразуют световое раздражение в нервное возбуждение. Простыми словами, являются тем самым элементом глаза, благодаря которому он реагирует на освещение.

Строение

Палочки состоят из наружного сегмента, который включает мембранными дисками, связующего отдела, его также называют ресничкой из-за формы, внутреннего отдела с митохондриями. Нервные окончания находятся у основания палочки.

Пигмент родопсин, имеющийся в палочках, отвечает за чувствительность к свету. При действии световых лучей происходит обесцвечивание пигмента.

Распределение палочек по телу сетчатки неравномерно. На один квадратный миллиметр может быть от двадцати до двухсот тысяч палочек. На периферических участках их плотность меньше, чем на центральных. Этим обуславливается возможность ночного и периферического зрения. В желтом пятне палочек почти нет.

Совместная работа

Вместе с палочками колбочки служат для различия цветов и остроты зрения. Дело в том, что палочки чувствительны только к изумрудно-зеленой области спектра. Все остальное – это колбочки. Длина улавливаемой палочками волны не превышает 500 нм (а именно 498). Надо сказать, что благодаря расширенному диапазону чувствительности колбочки имеют реакцию на все волны. На свой же спектр просто более чувствительно.

А вот ночью, когда фотонового потока не хватает для восприятия колбочками, в зрении участвуют палочки. Человек видит очертания предметов, силуэты, но не ощущает цвета.

Итак, какой вывод можно сделать? Палочки и колбочки – это два вида фоторецепторов, которые находятся в строении сетчатки глаза. Колбочки отвечают за восприятие цветовых волн, палочки более восприимчивы к очертаниям. Получается, ночью зрительная функция выполняется в большинстве благодаря палочкам, а днем больше работают колбочки. В случае дисфункции определенной части фоторецепторов, могут возникать проблемы с периферическим зрением, а также восприятием цвета. Если набор колбочек, отвечающих за один спектр, не функционирует, глаз не будет воспринимать этот спектр.