Запись суммарной электрической активности фоторецепторов сетчатки называют. Фотохимические реакции в рецепторах сетчатки. Структура и функции слоёв сетчатки

Размер: px

Начинать показ со страницы:

Транскрипт

1 Текущие тесты по разделу ФИЗИОЛОГИЯ АНАЛИЗАТОРОВ (СЕНСОРНЫХ СИСТЕМ) 1. Общая физиология анализаторов 1. Термин "анализатор" был впервые введен в физиологию в 1909 году: а) Н.Е. Введенским б) А.А. Ухтомским в) И.П. Павловым г) Ч. Шеррингтоном 2. Анализатор - единая система, включающая: а) органы чувств б) периферический рецепторный аппарат, проводниковый отдел и центральный корковый отдел в) периферический рецепторный аппарат, проводниковый отдел и центральный корковый отдел, систему регуляции по принципу обратной связи г) проводниковый отдел и центральный корковый отдел 3. Специализированные структуры, воспринимающие действие раздражителя: а) синапсы б) сенсорные системы в) рецепторы г) анализаторы 4. В состав анализатора не входит: а) рецепторный аппарат б) проводящие пути в) ретикулярная формация г) центр в коре полушарий 5. Преобразование стимула в нервный импульс в рецепторе называют: а) первичным кодированием б) сенсибилизацией в) декодированием г) адаптацией 6. Сила раздражителя кодируется в нейроне: а) частотой импульсов б) длительностью импульсов в) амплитудой импульсов 7. Элементарный низший анализ воздействия внешней среды происходит в: а) Рецепторе б) Ретикулярной формации в) Проводящих путях г) Коре большого мозга 8. Высший тончайший анализ воздействия внешней среды у человека происходит в: а) Рецепторе б) Стволе мозга в) Промежуточном мозге г) Коре большого мозга

2 9. Высший уровень взаимодействия анализаторов: а) бульбарный б) стволовой в) кортикальный г) таламический 10. Рецепторы, специализированные к восприятию нескольких видов раздражителя: а) полимодальные б) эффекторные в) сенсорные г) специфические 11. К контактным рецепторам относятся рецепторы: а) Обонятельные б) Вкусовые в) Слуховые г) Зрительные 12. К дистантным рецепторам относятся рецепторы: а) Тактильные б) Болевые в) Вкусовые г) Слуховые 13. К интерорецепторам относятся: а) Проприорецепторы б) Висцерорецепторы в) Фоторецепторы г) Вестибулорецепторы 14. К контактным рецепторам относятся рецепторы: а) Тактильные б) Обонятельные в) Вестибулорецепторы г) Фоторецепторы 15. К дистантным рецепторам относятся рецепторы: а) Вкусовые б) Фоторецепторы в) Тактильные г) Болевые 16. К первичночувствующим рецепторам относят: а) вкусовые почки б) волосковые клетки улитки в) тактильные рецепторы г) фоторецепторы сетчатки

3 17. Ко вторичночувствующим рецепторам относят: а) интрафузальные мышечные волокна б) фоторецепторы сетчатки в) тактильные г) обонятельные 18. Рецепторный потенциал имеет характер: а) распространяющийся б) локальный 19. Какой электрический процесс первым регистрируется в первичночувствующих рецепторах? а) рецепторный потенциал б) генераторный потенциал в) потенциал действия 20. Нейромедиатор, наиболее часто секретируемый вторичночувствующими рецепторами: а) ацетилхолин б) гистамин в) серотонин г) норадреналин 21. Избирательную чувствительность рецептора к действию определённого раздражителя называют: а) специфичностью б) аккомодацией в) возбудимостью г) адаптацией 22. Способность рецепторов приспосабливаться к постоянно действующему раздражителю называют: а) аккомодацией б) модальностью в) адаптацией г) кодированием 23. Адаптация рецептора при длительном действии на него раздражителя заключается в: а) уменьшении порога раздражения б) уменьшении возбудимости рецепторов в) увеличении возбудимости рецепторов 24. Частота возникновения импульсов в рецепторах в процессе их адаптации: а) уменьшается б) не изменяется в) увеличивается 25. Отсутствует свойство адаптации у рецепторов: а) Тактильных рецепторов б) Вкусовых рецепторов в) Проприорецепторов г) Обонятельных рецепторов

4 26. К рецепторам, практически не обладающим адаптацией, относят: а) температурные б) вестибулярные в) вкусовые г) тактильные 27. Внешним анализатором человека является анализатор: а) Двигательный б) Обонятельный в) Вестибулярный г) Интероцептивный 28. Внутренним анализатором человека является анализатор: а) Обонятельный б) Вкусовой в) Двигательный г) Кожный 29. Внешним анализатором человека является анализатор: а) Вестибулярный б) Двигательный в) Интероцептивный г) Вкусовой 30. К внешним анализаторам человека не относится анализатор: а) Вестибулярный б) Слуховой в) Зрительный г) Кожный 31. К внутренним анализаторам человека не относится анализатор: а) Интероцептивный б) Вестибулярный в) Слуховой г) Двигательный 2. Физиология зрительного анализатора 32. К вспомогательному аппарату глаза не относятся: а) Мышцы глазного яблока б) Мимические мышцы в) Слезный аппарат г) Защитные приспособления (брови, ресницы, веки) 33. Двигательный аппарат глазного яблока включает произвольных мышц: а) Пять б) Шесть в) Семь г) Восемь

5 34. В сетчатке глаза имеется палочек около: а) 7 млн. б) 65 млн. в) 130 млн. г) 260 млн. 35. Какие рецепторы составляют жёлтое пятно сетчатки? а) Палочки б) Колбочки 36. На периферии сетчатки больше: а) колбочек б) палочек 37. Аппаратом дневного и цветового зрения глаза являются: а) Палочки б) Колбочки в) Ганглиозные клетки г) Биполярные клетки 38. Аппаратом сумеречного зрения глаза являются: а) Биполярные клетки б) Ганглиозные клетки в) Палочки г) Колбочки 39. В рецепторе зрительного анализатора при формировании рецепторного потенциала мембрана: а) реполяризуется б) деполяризуется в) гиперполяризуется 40. Место выхода зрительного нерва из глазного яблока называют: а) слепым пятном б) центральной ямкой в) конечным путём г) жёлтым пятном 41. Аксоны каких клеток сетчатки образуют зрительный нерв? а) Амакриновых б) Горизонтальных в) Биполярных г) Ганглиозных 42. Совокупность рецепторов, раздражение которых вызывает возбуждение одной ганглиозной клетки сетчатки, называют: а) рецептивным полем б) слепым пятном в) жёлтым пятном г) центральной ямкой

6 43. Подкорковый центр зрительного анализатора находится в: а) продолговатом мозге б) мосту в) лимбической системе г) латеральных коленчатых телах таламуса и верхних холмиках четверохолмия 44. Центр зрительного анализатора локализован в области коры: а) затылочной б) теменной в) височной г) лобной 45. Способность глаза различать две светящиеся точки, проекции которых падают на сетчатку под углом в одну минуту, называют: а) нормальной остротой зрения б) рефракцией глаза в) пресбиопией г) астигматизмом 46. Способность глаза настраиваться на чёткое видение предметов в зависимости от их удалённости называют: а) аккомодацией б) остротой зрения в) пресбиопией г) астигматизмом 47. Аккомодация глаза осуществляется в основном за счет: а) Стекловидного тела б) Роговицы в) Хрусталика г) Водянистой влаги камер 48. Механизм аккомодации глаза состоит в изменении: а) кривизны хрусталика б) количества палочек в) количества активных рецепторов г) диаметра зрачка 49. Нормальное преломление световых лучей глазными средами и фокусирование их на сетчатке - это: а) Эмметропия б) Миопия в) Гиперметропия г) Астигматизм 50. Повышение чувствительности глаза в темноте связано с: а) распадом йодопсина б) синтезом йодопсина в) синтезом родопсина г) распадом родопсина

7 51. Полная адаптация глаз при выходе из светлого помещения в более темное происходит за: а) 1-3 мин б) 4-5 мин в) мин г) мин 52. Адаптация глаз при выходе из темного помещения на яркий свет происходит за: а) 1-3 мин б) 4-5 мин в) мин г) мин 53. Бинокулярное зрение обеспечивает: а) фокусировку лучей на сетчатке б) различение оттенков цвета в) объёмное видение 54. Пространство, видимое одним глазом при фиксации взора, называют: а) полем зрения б) рецептивным полем в) пространственным порогом г) остротой зрения 55. Реакцию зрачка на действие света, проявляющуюся в его сужении, называют: а) зрачковым рефлексом б) рефракцией зрения в) астигматизмом г) аккомодацией 56. Запись суммарной электрической активности фоторецепторов сетчатки называют: а) электроретинограммой б) электрокардиограммой в) электроэнцефалограммой г) кимограммой 57. Внутриглазное давление в норме у человека составляет: а) 6-15 мм рт. ст. б) мм рт. ст. в) мм рт. ст. г) мм рт. ст. 58. Старческая дальнозоркость, развивающаяся у людей после лет, - это: а) Миопия б) Пресбиопия в) Эмметропия г) Астигматизм 59. Старческая дальнозоркость обусловлена: а) потерей эластичности хрусталика б) рефракцией зрения в) неодинаковым радиусом кривизны хрусталика г) снижением количества палочек

8 60. При гиперметропии и пресбиопии главный фокус находится: а) за сетчаткой б) перед сетчаткой в) на сетчатке 61. При миопии (близорукости) главный фокус находится: а) перед сетчаткой б) на сетчатке в) за сетчаткой 62. Аномалия рефракции, при которой световые лучи фокусируются позади сетчатки. - это: а) Миопия б) Эмметропия в) Астигматизм г) Гиперметропия 63. Аномалия рефракции, при которой световые лучи фокусируются впереди сетчатки, - это: а) Эмметропия б) Миопия в) Гиперметропия г) Пресбиопия 64. Близорукость корректируют при помощи: а) цилиндрических линз б) астигматических линз в) двояковыпуклых линз г) двояковогнутых линз 65. Неодинаковое преломление лучей разными участками роговицы называют: а) астигматизмом б) пресбиопией в) аккомодацией г) рефракцией 3. Физиология слухового анализатора 66. К звукопроводящим образованиям слухового анализатора относят: а) барабанную перепонку, молоточек, наковальню, стремечко б) евстахиеву трубу, преддверие в) кортиев орган, полукружные протоки 67. Евстахиева (слуховая) труба входит в состав: а) Наружного уха б) Среднего уха в) Внутреннего уха г) Носоглотки 68. Барабанная полость имеет объем около: а) 1 см 3 б) 2 см 3 в) 3 см 3 г) 4 см 3

9 69. Улитка входит в состав уха: а) Наружного б) Среднего в) Внутреннего 70. Спиральный (Кортиев) орган находится в: а) средней лестнице б) лестнице преддверия в) барабанной лестнице г) барабанной полости 71. Эндолимфа находится в: а) средней лестнице б) лестнице преддверия в) барабанной лестнице г) барабанной полости 72. К рецепторному отделу слухового анализатора относят: а) волосковые клетки б) барабанную перепонку в) основную мембрану г) покровную мембрану 73. Возбуждение рецепторов в кортиевом органе возникает при: а) деформации барабанной перепонки б) деформации волосковых клеток в) колебании барабанной перепонки г) колебании перилимфы 74. В рецепторе слухового анализатора при формировании рецепторного потенциала мембрана: а) реполяризуется б) деполяризуется в) гиперполяризуется 75. Подкорковый центр слухового анализатора расположен в: а) Продолговатом мозге б) Мосту в) Лимбической системе г) Медиальных коленчатых телах таламуса и нижних холмиках четверохолмия 76. Корковое представительство слухового анализатора находится в: а) височной области б) теменных долях в) затылочной области г) соматосенсорной коре 77. Область восприятия человеком звуковых колебаний находится в диапазоне: а) Гц б) Гц в) Гц г) Гц

10 78. Звуки речи имеют частоту колебаний в секунду в диапазоне: а) Гц б) Гц в) Гц г) Гц 4. Физиология вкусового анализатора 79. Рецепторный потенциал в структурах вкусовой луковицы возникает: а) во вкусовой клетке б) в базальных клетках в) в опорных клетках г) во вкусовом канале 80. Вкусовые рецепторы относят к: а) дистантному типу б) контактному типу 81. К какому типу относят рецепторные клетки вкусового анализатора? а) К вторичночувствующим б) К первичночувствующим 82. Каким ионам отводят основную роль в генерации рецепторного потенциала при ощущении солёного вкуса? а) Ca2+ б) Н+ в) Na+ г) Cl- 83. Каким ионам отводят основную роль в генерации рецепторного потенциала при ощущении кислого? а) Ca2+ б) Н+ в) Na+ г) CI- 84. К какому вкусу наиболее быстро наступает адаптация? а) К сладкому б) К горькому в) К вкусу глутамата г) К кислому 85. Корковое представительство вкусового анализатора находится в: а) постцентральной извилине б) гиппокампе, грушевидной коре в) затылочной области коры г) мозжечке

11 5. Физиология обонятельного анализатора 86. Укажите рецепторную обонятельную структуру: а) Эпителиальные клетки б) Биполярные нейроны в) Псевдоуниполярные нейроны г) Обонятельные луковицы 87. К какому типу относят обонятельные рецепторы? а) к интерорецептивным б) к экстероцептивным в) к проприорецептивным 88. К какому типу относят обонятельные рецепторы? а) К контактным б) К дистантным 89. Рецепторные обонятельные клетки относят к: а) вторичночувствующим б) первичночувствующим 90. В какой последовательности обонятельная информация направляется в мозг? а) Обонятельные нервы обонятельные луковицы обонятельный тракт обонятельный треугольник переднее продырявленное вещество гиппокамп б) Обонятельный тракт обонятельные луковицы обонятельные нервы обонятельный треугольник переднее продырявленное вещество гиппокамп в) Обонятельные луковицы обонятельный треугольник переднее продырявленное вещество обонятельные нервы - гиппокамп 91. Правильная последовательность обработки информации в обонятельном анализаторе: а) обонятельная луковица передний мозг б) обонятельная луковица средний мозг передний мозг в) обонятельная луковица таламус передний мозг г) обонятельная луковица продолговатый мозг 92. Корковое представительство обонятельного анализатора находится в: а) гиппокампе, крючке б) затылочной области коры в) теменной области коры г) соматосенсорной зоне коры 93. Тепловые рецепторы кожи представлены: а) Тельцами А. Руффини б) Колбами В. Краузе в) Тельцами Г. Мейснера г) Дисками Ф. Меркеля. 94. Холодовые рецепторы кожи представлены: а) Тельцами А. Руффини б) Колбами В. Краузе в) Тельцами Г. Мейснера г) Дисками Ф. Меркеля. 6. Физиология температурного анализатора

12 95. В коже более глубоко локализуются: а) холодовые рецепторы б) тепловые рецепторы в) тельца Пачини 96. На единицу поверхности кожи приходится больше: а) тепловых рецепторов б) холодовых рецепторов 97. Корковое представительство температурного анализатора находится в: а) прецентральной извилине б) постцентральной извилине в) затылочной области коры г) височной области коры 98. Тактильные рецепторы кожи представлены: а) Тельцами А. Руффини б) Колбами В. Краузе в) Тельцами Г. Мейснера г) Тельцами А. Фатера - Ф. Пачини. 99. К рецепторам давления кожи относятся: а) Тельца А. Руффини б) Тельца Г. Мейснера в) Тельца А. Фатера - Ф. Пачини г) Свободные нервные окончания. 7. Физиология тактильного анализатора 100. Минимальное расстояние между двумя точками, при одновременном раздражении которых возникает ощущение двух прикосновений, называют: а) пространственным порогом б) пороговой силой в) порогом раздражения г) порогом чувствительности 101. Максимальным пространственным порогом обладает: а) спина б) предплечье в) тыльная сторона кисти г) палец руки 102. Минимальным пространственным порогом обладает: а) палец руки б) предплечье в) подошвенная часть стопы г) спина

13 8. Физиология двигательного анализатора 103. Функция двигательного (проприоцептивного) анализатора свойственна в основном мышцам: а) Сердца б) Скелетным в) Сосудов г) Внутренних органов 104. Рецепторы растяжения мышцы: а) мышечные веретёна б) колбы Краузе в) диски Меркеля г) тельца Мейснера 105. Сухожильный орган Гольджи расположен: а) в сухожилиях мышц б) среди экстрафузальных мышечных волокон в) в дистальных отделах интрафузальных волокон г) в ядерной сумке интрафузальных волокон 106. Интрафузальные мышечные волокна выполняют функцию: а) обеспечения слабого сокращения б) обеспечения чувствительности мышечного веретена к растяжению в) расслабления мышцы 9. Физиология ноцицептивного (болевого) анализатора 107. Восприятие боли, возникающее в результате повреждения тканей организма, называют: а) ноцицепцией б) иррадиацией в) аналгезией г) перцепцией 108. Болевые рецепторы: а) тельца Мейснера б) колбы Краузе в) свободные нервные окончания г) тельца Руффини


Физиология анализаторов. Тест текущего контроля 1. Термин "анализатор" был впервые введен в физиологию в 1909 году Н.Е. Введенским А.А. Ухтомским И.П. Павловым Ч. Шеррингтоном 2. Выберите наиболее точный

ОРГАНЫ ЧУВСТВ. РЕЦЕПТОРЫ. ПРИНЦИПЫ КОДИРОВАНИЯ ИНФОРМАЦИИ. СЕНСОРНЫЕ РЕЦЕПТОРЫ Сенсорные рецепторы это специфические клетки, настроенные на восприятие различных раздражителей внешней и внутренней среды

Развитие сенсорных систем организма Сенсорные системы (анализаторы) - это единые системы анализа информации, состоящие из 3-х отделов: периферического, проводникового и центрального. Отделы (звенья) Периферический

8 класс Тема: Анализаторы или сенсорные системы Общая характеристика сенсорных систем. Их строение, функции. Основные физиологические свойства сенсорных систем. Зрительный анализатор. Строение глаза. Светопреломляющие

8класс Биология профиль Тема: Органы чувств Задание 1 Органы чувств Зрительные рецепторы расположены в оболочке глаза, которая называется... [Сетчаткой Радужной Роговицей Сосудистой] Задание 2 Органы чувств

Анализаторы и органы чувств Анализатор включает 3 компонента: Периферическая часть (рецепторы, орган чувств) Проводниковый отдел (нервные волокна) Центральный отдел (зона коры больших полушарий) Воспринимает

Анализатор (греч. analysis разложение, расчленение) это совокупность нервных структур, воспринимающих и анализирующих различные внешние и внутренние раздражения. Термин предложил И. П. Павлов в 1909 году.

Анализаторы, органы чувств и их значение Анализаторы. Все живые организмы, в том числе и человек, нуждаются в информации об окружающей среде. Эту возможность им обеспечивают сенсорные (чувствительные)

Биофизические процессы в наружном, среднем и внутреннем ухе. Слуховая сенсорная система включает: Структура наружного уха. Функции наружного уха. Направленность слухового восприятия. Среднее ухо (барабанная

Тест по биологии Анализаторы Органы чувств 8 класс 1 вариант 1. Функция органов чувств состоит в преобразовании энергии внешнего раздражения в форму, доступную для раздражения А. Рецепторов Б. Спинного

Российский университет дружбы народов Медицинский институт Кафедра анатомии человека Специальность: Сестринское дело Доцент Гурова О.А. ОРГАНЫ ЧУВСТВ План лекции: 1. Закономерности строения органов чувств

Виды чувствительности (рецепции) экстероцептивная общая (соматосенсорная) - тактильная, болевая, температурная специальная зрительная слуховая обонятельная вкусовая гравитационная (равновесия) интероцептивная

ИТОГОВЫЕ ТЕСТЫ по разделу ФИЗИОЛОГИЯ АНАЛИЗАТОРОВ (СЕНСОРНЫХ СИСТЕМ) Выберите один правильный ответ 1. Изменение чувствительности рецепторов в сторону понижения называется: а) возбудимостью б) специфичностью

ОРГАНЫ ЧУВСТВ Орган зрения Органы чувств (анализаторы) Анатомические образования (приборы) (i) воспринимающие энергию внешнего воздействия, (ii) трансформирующие ее в нервный импульси и (iii) передающие

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Биолого-почвенный факультет Кафедра физиологии и психофизиологии УТВЕРЖДАЮ Председатель УМК факультета 2004 г. : ПРОГРАММА

Национальный фармацевтический университет Кафедра физиологии и анатомии человека Зрительный анализатор. Возрастные особенности анализаторов Шаталова О.М. План 1. Общие принципы строения сенсорных систем.

ТЕМА «Анализаторы» 1. Начальным звеном обонятельного анализатора считают 1) нервы и проводящие нервные пути 2) рецепторы, расположенные на языке 3) нейроны коры больших полушарий головного мозга 4) чувствительные

304-Группа: Фаттоева Зарина. Проверила: Рахматова Н.Б Самарканд - 2016 ТЕОРИЯ ФУНКЦИОНАЛЬНЫХ СИСТЕМ Петр Кузьмич Анохин (1898-1974) Функциональная система динамическая саморегулирующаяся организация, все

Лекция 6. Психические познавательные ощущения и восприятия процессы: 6.2 Понятие об ощущениях Согласно А.В. Петровскому, ощущения это отражение отдельных свойств предметов и явлений, непосредственно воздействующих

Перечень вопросов к итоговому контролю Центральная нервная система. 1. Развитие центральной нервной системы в эмбриогенезе. Основные этапы формирования нервной системы в филогенезе. 2. Развитие головного

ИТОГОВОЕ ЗАНЯТИЕ ПО РАЗДЕЛАМ «ЧАСТНАЯ ФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ. ФИЗИОЛОГИЯ СЕНСОРНЫХ СИСТЕМ» Основные вопросы: 1. Спинной мозг. Функции спинного мозга. Основные спинальные рефлексы. Последствия повреждения

1 1.7. Анализаторы человека 1.7.1. Устройство анализатора. Зрительный анализатор Изменение условий окружающей среды и состояние внутренней среды человека воспринимается нервной системой, которая регулирует

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ «НЕЙРОФИЗИОЛОГИЯ» Реализуется в базовой части учебного плана подготовки специалиста обучающего по направлению подготовки (специалиста) ФГОС 37.05.01./ клиническая психология

НЕРВНАЯ СИСТЕМА. ОРГАНЫ ЧУВСТВ. 1. Нейрон: определение, части, морфологическая классификация, строение, топография, 2. Строение простой и сложной рефлекторной дуги 3. Развитие центральной нервной системы

Сенсорная система Выберите один правильный ответ 001. Сетчатка развивается 1)из внутреннего листка глазного бокала 2)из наружного листка глазного бокала 3)из эктодермы, расположенной перед глазным пузырьком

Тема: НЕРВНАЯ СИСТЕМА (6 часов). Общий обзор нервной системы. Строение и функция нервной системы. Классификация по топографическому и функциональному признакам. Нейрон основная структурно-функциональная

ТЕСТОЫЕ ОПРОСЫ Общая физиология сенсорных систем Физиология зрения Физиология чувства равновесия и слуха Соматовисцеральная чувствительность, боль Лекция 1 Общая физиология сенсорных систем 1. *Какие явление

Тесты текущего контроля по теме Частная физиология нервной системы 1. В каких рогах спинного мозга расположены тела альфа-мотонейронов? а) В задних б) В боковых в) В передних 2. В спинном мозге замыкаются

Примерные задания по Биологии П4 8класс 1. В какой доле коры больших полушарий находится слуховая зона: А) лобная Б) затылочная В) теменная Г) височная 2. Сколько аксонов может иметь нервная клетка: А)

ПО БИОЛОГИИ И ГЛАЗА РАЗРАБОТКА СТРЕЛЬНИКОВОЙ ВИКТОРИИ ВИКТОРОВНЫ, МЕТОДИСТА ОТДЕЛА НАУЧНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ ГБОУ ИРО КК (АРМАВИРСКИЙ ФИЛИАЛ) ГЛАЗА РАДУЖКА ХРУСТАЛИК

Характеристики анализаторов человека Анализатор человека подсистема центральной нервной системы, обеспечивающая приём и первичный анализ информации. Периферийная часть анализатора рецептор, центральная

Геометрическая теория оптических изображений Если пучок световых лучей, исходящий из какой-либо точки A, в результате отражений, преломлений или изгибаний в неоднородной среде сходится в точке A, то A

1 - «УТВЕРЖДАЮ» Заведующий кафедрой нормальной физиологии, д. м. н., профессор С.В. Клаучек Протокол 1 от «29» августа 2014 года МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ ПО ВЫПОЛНЕНИЮ ВНЕАУДИТОРНОЙ САМОСТОЯТЕЛЬНОЙ

Вестибулярный и кинестетический анализаторы 1. Организация вестибулярного анализатора 2. Организация кинестетического анализатора 3. Внутренние (висцеральные) анализаторы Вопрос_1 Организация вестибулярного

ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ КОРЫ БОЛЬШИХ ПОЛУШАРИЙ 1 Общая организация мозга 2 Структурно-функциональная модель интегративной работы мозга (Лурия А. Р.) 3 Конечный мозг образован двумя полушариями, которые

СЛУХОВОЙ АНАЛИЗАТОР Понимание общего механизма действия музыки на организм человека невозможно без знания строения слухового анализатора и принципов его работы. Слуховой анализатор предназначен для восприятия

МИНИСТЕРСТО ОРАЗОАНИЯ И НАУКИ РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Мурманский государственный гуманитарный университет» (ФОУ ПО «МУ»)

АНАЛИЗАТОРЫ ОБЩИЕ СВОЙСТВА АНАЛИЗАТОРОВ 1. Сила раздражителя кодируется в рецепторе: 1. частотой возникновения рецепторного потенциала 2. амплитудой рецепторного потенциала 2. Рецепторы, специализированные

МАТЕРИАЛЫ для подготовки к тестированию по биологии 8 класс Учитель: Кутурова Галина Алексеевна ТЕМА Раздел «Нервная система» Раздел «Зрительный анализатор» ЗНАТЬ/УМЕТЬ Значение, строение и функционирование

3 Содержание Введение. 4 Раздел 1. Нервная система и анализаторы.5 1.1. Функции и строение нервной системы 6 1.1.1. Центральная нервная система.11 1.1.2. Вегетативная нервная система 15 1.2. Значение и

Физиология с основами анатомии Слуховой и вестибулярный анализаторы к.м.н. доц. Кучук А.В. Слуховойанализатор Адекватный раздражитель механическая волна вдиапазоне20 20000 Гц Параметры механической волны

ОРГАНЫ ЧУВСТВ: Орган слуха и равновесия Орган обоняния Орган вкуса Кожный покров Преддверно-улитковый орган (орган слуха и равновесия) Подразделяется на 3 части, связанных анатомически и функционально):

Министерство транспорта Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)» Кафедра психологии, социологии,

ФИЗИОЛОГИЧЕСКИЕ ОСНОВЫ ОХРАНЫ ТРУДА Учебное пособие Cанкт-Петербург 2006 Министерство образования и науки Российской Федерации Федеральное агентство по образованию САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Тема: Центральная нервная система. Спинной и головной мозг. Периферическая нервная система. 1-вариант 1. Ствол мозга составляет: 1) мост, продолговатый мозг 2) продолговатый мозг 3) средний мозг, мост

Костанайский государственный университет имени А. Байтурсынова Краткие данные по физиологии органа зрения Доцент Байкенов М.Т. Основной функцией зрительного анализатора животных является восприятие света,

Нервные окончания, классификация Концевые аппараты (межнейронные синапсы) Эффекторные нервные окончания (эффекторы, нейроорганные синапсы) Чувствительные (рецепторные) нервные окончания Синапсы дендриты

ОСНОВНЫЕ СВОЙСТВА СЛУХА Орган слуха человека является своеобразным приемником звука, резко отличающимся от приемников звука, создаваемых человеком. Ухо человека обладает свойствами частотного анализатора,

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН САМАРКАНДСКИЙ МЕДИЦИНСКИЙ ИНСТИТУТ РЕФЕРАТ ТЕМА: СПИННОЙ МОЗГ Выполнил: Вохидов У. САМАРКАНД-2016 СПИННОЙ МОЗГ Значение нервной системы Нервная система

АНАЛИЗАТОРЫ КОЖИ 1. Строение кожи и расположение рецепторов 2. Структура и функции тактильного анализатора 3. Структура и функции температурного анализатора Вопрос_1 Строение кожи и расположение рецепторов

Глаз и его функции Лекция 1. Строение глаза. Аккомодация. Бинокулярное зрение. 2. Недостатки оптической системы глаза. 3. Угол зрения. Разрешающая способность. Острота зрения. 4. Акустическая биомеханика

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра Естественных наук 2. Направление подготовки 06.03.01 Биология, профиль Общая

Вопросы теоретической части ИТОГОВОЕ ЗАНЯТИЕ по НЕВРОЛОГИИ (ЦНС) 1. Фило- и онтогенез нервной системы. 2. Отделы нервной системы и их значение. 3. Нейрон структурно-функциональная единица нервной системы.

Лекция 13. Тема: Сенсорная система организма Вопросы темы: Общая физиология анализаторных систем организма. Понятия о ротовом или оральном анализаторе, роль в апробации пищевых веществ. Вкусовой и обонятельный

Основы геометрической оптики. Аппарат зрения человека План 1. Основные понятия геометрической оптики. 2. Светопроводящая и световоспринимающая системы глаза. 3. Недостатки зрения. Свет это электромагнитные

МАТЕРИАЛЫ Для подготовки по биологии 8.1 класс Модуль 4 Учитель: З.Ю. Соболева Раздел/Тема Знать Уметь Органы чувств Строение зрительного аппарата Строение органа слуха и вестибулярного аппарата Основные

ТЕМА «Нервная система» 1. Какую функцию в организме человека и животного выполняет нервная клетка 1) двигательную 2) защитную 3) транспорта веществ 4) проведения возбуждения 2. В каком отделе мозга расположен

ПЕРЕЧЕНЬ ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ Нейроанатомия как наука 1. История развития взглядов и учений о морфологической и функциональной организации центральной нервной системы (Р.Декарт, Ф.Галль, В.Бец и т.д.).

Фамилия Шифр Имя Район Рабочее место Шифр Итого балов ЗАДАНИЕ (демонстрационный вариант) практический тур межрегиональной олимпиады школьников по биологии «АЛЬФА», 2014-2015 уч. год, 9 класс Демонстрационная

Чувства БИОЛОГИЯ ЧЕЛОВЕК ЧУВСТВА Глава 1: Наши чувства Зачем нам нужны наши чувства? Все организмы способны ощутать свое окружение, но у животных и людей развиты несколько очень сложные сенсорные системы,

Аннотация рабочей программы дисциплины (модуля) «Нормальная физиология» по направлению 14.03.02 Ядерные физика и технологии (профиль Радиационная безопасность человека и окружающей среды) 1. Цели и задачи

Лекция 1 ОБЩАЯ ФИЗИОЛОГИЯ СЕНСОРНЫХ СИСТЕМ Объективная и субъективная сторона восприятия Специфичность сенсорных систем Закон специфических энергий Строение сенсорной системы Принципы организации сенсорных

Входная контрольная работа по биологии 9 класс 1 вариант 1. Кровь относится к типу тканей: А) соединительная Б) нервная В) эпителиальная Г) мышечная 2. К мышцам таза относятся А) ягодичные Б) икроножные

Тема урока: Чувствительность анализаторов. Взаимодействие анализаторов. Урок учителя биологии Бурмистровой Инны Евгеньевны Цели урока: продолжить формировать понятия органов чувств; повторить и обобщить

Основы психофизиологии., М. ИНФРА-М, 1998, с.57-72, Глава 2 Отв.ред. Ю.И. Александров

2.1. Строение и функции оптического аппарата глаза

Глазное яблоко имеет шарообразную форму, что облегчает его повороты для наведения на рассматриваемый объект и обеспечивает хорошую фокусировку изображения на всей светочувствительной оболочке глаза - сетчатке. На пути к сетчатке лучи света проходят через несколько прозрачных сред роговицу, хрусталик и стекловидное тело. Определённая кривизна и показатель преломления роговицы и в меньшей мере хрусталика определяют преломление световых лучей внутри глаза. На сетчатке получается изображение, резко уменьшенное и перевернутое вверх ногами и справа налево (рис. 4.1 а). Преломляющую силу любой оптической системы выражают в диоптриях (D). Одна диоптрия равна преломляющей силе линзы с фокусным расстоянием 100 см. Преломляющая сила здорового глаза составляет 59D при рассматривании далеких и 70,5D при рассматривании близких предметов.

Рис. 4.1.

2.2. Аккомодация

Аккомодацией называют приспособление глаза к ясному видению объектов, расположенных на разном расстоянии (подобно фокусировке в фотографии). Для ясного видения объекта необходимо, чтобы его изображение было сфокусировано на сетчатке (рис. 4.1 б). Главную роль в аккомодации играет изменение кривизны хрусталика, т.е. его преломляющей способности. При рассматривании близких предметов хрусталик становится более выпуклым. Механизмом аккомодации является сокращение мышц, изменяющих выпуклость хрусталика.

2.3. Аномалии рефракции глаза

Две главные аномалии рефракции глаза близорукость (миопия) и дальнозоркость (гиперметропия). Эти аномалии обусловлены не недостаточностью преломляющих сред глаза, а изменением длины глазного яблока (рис. 4.1 в, г). Если продольная ось глаза слишком длинна (рис. 4.1 в), то лучи от далёкого объекта сфокусируются не на сетчатке, а перед ней, в стекловидном теле. Такой глаз называется близоруким. Чтобы ясно видеть вдаль, близорукий должен поместить перед глазами вогнутые стекла, которые отодвинут сфокусированное изображение на сетчатку (рис. 4.1 д). В отличие от этого, в дальнозорком глазу (рис. 4.1 г) продольная ось укорочена, и поэтому лучи от далёкого объекта фокусируются за сетчаткой, Этот недостаток может быть компенсирован увеличением выпуклости хрусталика. Однако при рассматривании близких объектов аккомодационные усилия дальнозорких людей недостаточны. Именно поэтому для чтения они должны надевать очки с двояковыпуклыми линзами, усиливающими преломление света (рис. 4.1 е).

2.4. Зрачок и зрачковый рефлекс

Зрачок - это отверстие в центре радужной оболочки, через которое свет проходит в глаз. Он повышает чёткость изображения на сетчатке, увеличивая глубину резкости глаза и устраняя сферическую аберрацию. Расширившийся при затемнении зрачок на свету быстро сужается ("зрачковый рефлекс"), что регулирует поток света, попадающий в глаз. Так, на ярком свету зрачок имеет диаметр 1,8 мм, при средней дневной освещённости он расширяется до 2,4 мм, а в темноте - до 7,5 мм. Это ухудшает качество изображения на сетчатке, но увеличивает абсолютную чувствительность зрения. Реакция зрачка на изменение освещённости имеет адаптивный характер, так как стабилизирует освещённость сетчатки в небольшом диапазоне. У здоровых людей зрачки обоих глаз имеют одинаковый диаметр. При освещении одного глаза зрачок другого тоже суживается; подобная реакция называется содружественной.

2.5. Структура и функции сетчатки

Сетчатка - это внутренняя светочувствительная оболочка глаза. Она имеет сложную многослойную структуру (рис. 4.2). Здесь расположены два вида фоторецепторов (палочки и колбочки) и несколько видов нервных клеток. Возбуждение фоторецепторов активирует первую нервную клетку сетчатки - биполярный нейрон. Возбуждение биполярных нейронов активирует ганглиозные клетки сетчатки, передающие свои импульсы в подкорковые зрительные центры. В процессах передачи и переработки информации в сетчатке участвуют также горизонтальные и амакриновые клетки. Все перечисленные нейроны сетчатки с их отростками образуют нервный аппарат глаза, который участвует в анализе и переработке зрительной информации. Именно поэтому сетчатку называют частью мозга, вынесенной на периферию.

2.6. Структура и функции слоёв сетчатки

Клетки пигментного эпителия образуют наружный, наиболее далекий от света, слой сетчатки. Они содержат меланосомы, придающие им чёрный цвет. Пигмент поглощает излишний свет, препятствуя его отражению и рассеиванию, что способствует чёткости изображения на сетчатке. Пигментный эпителий играет решающую роль в регенерации зрительного пурпура фоторецепторов после его обесцвечивания, в постоянном обновлении наружных сегментов зрительных клеток, в защите рецепторов от светового повреждения, а также в переносе к ним кислорода и питательных веществ.

Фоторецепторы. К слою пигментного эпителия изнутри примыкает слой зрительных рецепторов: палочек и колбочек. В каждой сетчатке человека находится 6-7 млн. колбочек и 110-125 млн. палочек. Они распределены в сетчатке неравномерно. Центральная ямка сетчатки - фовеа (fovea centralis) содержит только колбочки. По направлению к периферии сетчатки количество колбочек уменьшается, а количество палочек увеличивается, так что на дальней периферии имеются только палочки. Колбочки функционируют в условиях больших освещённостей, они обеспечивают дневное и цветовое зрение ; более светочувствительные палочки ответственны за сумеречное зрение.

Цвет воспринимается лучше всего при действии света на центральную ямку сетчатки, в которой расположены почти исключительно колбочки. Здесь же и наибольшая острота зрения. По мере удаления от центра сетчатки восприятие цвета и пространственное разрешение постепенно уменьшается. Периферия сетчатки, на которой находятся исключительно палочки, не воспринимает цвета. Зато световая чувствительность колбочкового аппарата сетчатки во много раз меньше, чем у палочкового. Поэтому в сумерках из-за резкого понижения колбочкового зрения и преобладания периферического палочкового зрения мы не различаем цвет ("ночью все кошки серы").

Зрительные пигменты. В палочках сетчатки человека содержится пигмент родопсин, или зрительный пурпур, максимум спектра поглощения которого находится в области 500 нанометров (нм). В наружных сегментах трёх типов колбочек (сине-, зелено- и красночувствительных) содержатся три типа зрительных пигментов, максимумы спектров поглощения которых находятся в синей (420 нм), зеленой (531 нм) и красной (558 нм) областях спектра. Красный колбочковый пигмент получил название йодопсин. Молекула зрительного пигмента состоит из белковой части (опсина) и хромофорной части (ретиналь, или альдегид витамина "А"). Источником ретиналя в организме служат каротиноиды; при их недостатке нарушается сумеречное зрение ("куриная слепота").

2.7. Нейроны сетчатки

Фоторецепторы сетчатки синаптически связаны с биполярными нервными клетками (см. рис. 4.2). При действии света уменьшается выделение медиатора из фоторецептора, что гиперполяризует мембрану биполярной клетки. От неё нервный сигнал передаётся на ганглиозные клетки, аксоны которых являются волокнами зрительного нерва.

Рис. 4.2. Схема строения сетчатки глаза:
1 - палочки; 2 - колбочки; 3 - горизонтальная клетка; 4 - биполярные клетки; 5 - амакриновые клетки; 6 - ганглиозные клетки; 7 - волокна зрительного нерва

На 130 млн. фоторецепторных клеток приходится только 1 млн. 250 тыс. ганглиозных клеток сетчатки. Это значит, что импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганглиозной клетке. Фоторецепторы, соединённые с одной ганглиозной клеткой, образуют её рецептивное поле [Хьюбел, 1990; Физиол. зрения, 1992]. Таким образом, каждая ганглиозная клетка суммирует возбуждение, возникающее в большом количестве фоторецепторов. Это повышает световую чувствительность сетчатки, но ухудшает её пространственное разрешение. Лишь в центре сетчатки (в районе центральной ямки) каждая колбочка соединена с одной биполярной клеткой, а та, в свою очередь, соединена с одной ганглиозной клеткой. Это обеспечивает высокое пространственное разрешение центра сетчатки, но резко уменьшает его световую чувствительность.

Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, через отростки которых распространяются сигналы, меняющие синаптическую передачу между фоторецепторами и биполярами (горизонтальные клетки) и между биполярами и ганглиозными клетками (амакрины). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками. В сетчатку приходят и центробежные, или эфферентные, нервные волокна, приносящие к ней сигналы из мозга. Эти импульсы регулируют проведение возбуждения между биполярными и ганглиозными клетками сетчатки.

2.8. Нервные пути и связи в зрительной системе

Из сетчатки зрительная информация по волокнам зрительного нерва устремляется в мозг. Нервы от двух глаз встречаются у основания мозга, где часть волокон переходит на противоположную сторону (зрительный перекрёст, или хиазма). Это обеспечивает каждое полушарие мозга информацией от обоих глаз: в затылочную долю правого полушария поступают сигналы от правых половин каждой сетчатки, а в левое полушарие от левой половины каждой сетчатки (рис. 4.3).

Рис. 4.3. Схема зрительных путей от сетчатки глаза до первичной зрительной коры:
ЛПЗ - левое поле зрения; ППЗ - правое поле зрения; тф - точка фиксации взора; лг - левый глаз; пг - правый глаз; зн - зрительный нерв; х - зрительный перекрёст, или хиазма; от - оптический тракт; НКТ - наружное коленчатое тело; ЗК - зрительная кора; лп - левое полушарие; пп - правое полушарие

После хиазмы зрительные нервы называются оптическими трактами и основное количество их волокон приходит в подкорковый зрительный центр - наружное коленчатoe тело (НКТ). Отсюда зрительные сигналы поступают в первичную проекционную область зрительной коры (стриарная кора, или поле 17 по Бродману). Зрительная кора состоит из ряда полей, каждое из которых обеспечивает свои, специфические функции, получая как прямые, так и опосредованные сигналы от сетчатки и в общем сохраняя её топологию, или ретинотопию (сигналы от соседних участков сетчатки попадают в соседние участки коры).

2.9. Электрическая активность центров зрительной системы

При действии света в рецепторах, а затем и в нейронах сетчатки генерируются электрические потенциалы, отражающие параметры действующего раздражителя (рис. 4.4а, а). Суммарный электрический ответ сетчатки глаза на свет называют электроретинограммой (ЭРГ).

Рис. 4.4. Электроретинограмма (а) и вызванный светом потенциал (ВП) зрительной коры (б):
а,b,с,d на (а) - волны ЭРГ; стрелками указаны моменты включения света. Р 1 - Р 5 - позитивные волны ВП, N 1 - N 5 - негативные волны ВП на (б)

Она может быть зарегистрирована от целого глаза: один электрод помещают на поверхность роговой оболочки, а другой - на кожу лица вблизи глаза (либо на мочку уха). В ЭРГ хорошо отражаются интенсивность, цвет, размер и длительность действия светового раздражителя. Поскольку в ЭРГ отражена активность почти всех клеток сетчатки (кроме ганглиозных клеток), этот показатель широко используется для анализа работы и диагностики заболеваний сетчатки.

Возбуждение ганглиозных клеток сетчатки приводит к тому, что по их аксонам (волокнам зрительного нерва) в мозг устремляются электрические импульсы. Ганглиозная клетка сетчатки это первый в сетчатке нейрон "классического" типа, генерирующий распространяющиеся импульсы. Описано три основных типа ганглиозных клеток: отвечающие на включение света (on - реакция), его выключение (off - реакция) и на то и другое (on-off - реакция). В центре сетчатки рецептивные поля ганглиозных клеток маленькие, а на периферии сетчатки они значительно больше по диаметру. Одновременное возбуждение близко расположенных ганглиозных клеток приводит к их взаимному торможению: ответы каждой клетки становятся меньше, чем при одиночном раздражении. В основе этого эффекта лежит латеральное или боковое торможение (см. гл. 3). Благодаря круглой форме рецептивные поля ганглиозных клеток сетчатки производят так называемое поточечное описание сетчаточного изображения: оно отображается очень тонкой дискретной мозаикой, состоящей из возбужденных нейронов.

Нейроны подкоркового зрительного центра возбуждаются, когда к ним приходят импульсы из сетчатки по волокнам зрительного нерва. Рецептивные поля этих нейронов также круглые, но меньшего размера, чем в сетчатке. Пачки импульсов, генерируемые ими в ответ на вспышку света, короче, чем в сетчатке. На уровне НКТ происходит взаимодействие афферентных сигналов, пришедших из сетчатки, с эфферентными сигналами из зрительной коры, а также из ретикулярной формации от слуховой и других сенсорных систем. Это взаимодействие помогает выделять наиболее существенные компоненты сигнала и, возможно, участвует в организации избирательного зрительного внимания (см. гл. 9).

Импульсные разряды нейронов НКТ по их аксонам поступают в затылочную часть полушарий головного мозга, в которой расположена первичная проекционная область зрительной коры (стриарная кора). Здесь у приматов и человека происходит значительно более специализированная и сложная, чем в сетчатке и в НКТ, переработка информации. Нейроны зрительной коры имеют не круглые, а вытянутые (по горизонтали, вертикали или по диагонали) рецептивные поля (рис. 4.5) небольшого размера [Хьюбел, 1990].

Рис. 4.5 . Рецептивное поле нейрона зрительной коры мозга кошки (А) и ответы этого нейрона на вспыхивающие в рецептивном поле световые полоски разной ориентации (Б). А - плюсами отмечена возбудительная зона рецептивного поля, а минусами - две боковые тормозные зоны. Б - видно, что этот нейрон наиболее сильно реагирует на вертикальную и близкую к ней ориентацию

Благодаря этому они способны выделять из изображения отдельные фрагменты линий с той или иной ориентацией и расположением и избирательно на них реагировать (детекторы ориентаций). В каждом небольшом участке зрительной коры по её глубине сконцентрированы нейроны с одинаковой ориентацией и локализацией рецептивных полей в поле зрения. Они образуют ориентационную колонку нейронов, проходящую вертикально через все слои коры. Колонка - пример функционального объединения корковых нейронов, осуществляющих сходную функцию. Группа соседних ориентационных колонок, нейроны которых имеют перекрывающиеся рецептивные поля, но разные предпочитаемые ориентации, образует так называемую сверхколонку. Как показывают исследования последних лет, функциональное объединение отдалённых друг от друга нейронов зрительной коры может происходить также за счет синхронности их разрядов. Недавно в зрительной коре найдены нейроны с избирательной чувствительностью к крестообразным и угловым фигурам, относящиеся к детекторам 2-гo порядка. Таким образом, начала заполняться "ниша" между описывающими пространственные признаки изображения простыми ориентационными детекторами и детекторами высшего порядка (лица), найденными в височной коре.

В последние годы хорошо исследована так называемая "пространственно-частотная" настройка нейронов зрительной коры [Глезер, 1985; Физиол. зрения, 1992]. Она заключается в том, что многие нейроны избирательно реагируют на появившуюся в их рецептивном поле решётку из светлых и тёмных полос определённой ширины. Так, имеются клетки, чувствительные к решётке из мелких полосок, т.е. к высокой пространственной частоте. Найдены клетки с чувствительностью к разным пространственным частотам. Считается, что это свойство обеспечивает зрительной системе способность выделять из изображения участки с разной текстурой [Глезер, 1985].

Многие нейроны зрительной коры избирательно реагируют на определённые направления движения (дирекциональные детекторы) либо на какой-то цвет (цветооппонентные нейроны), а часть нейронов лучше всего отвечает на относительную удалённость объекта от глаз. Информация о разных признаках зрительных объектов (форма, цвет, движение) обрабатывается параллельно в разных частях зрительной коры.

Для оценки передачи сигналов на разных уровнях зрительной системы часто используют регистрацию суммарных вызванных потенциалов (ВП), которые у человека можно одновременно отводить от сетчатки и от зрительной коры (см. рис. 4.4 б). Сравнение вызванного световой вспышкой ответа сетчатки (ЭРГ) и ВП коры позволяет оценить работу проекционного зрительного пути и установить локализацию патологического процесса в зрительной системе.

2.10. Световая чувствительность

Абсолютная чувствительность зрения . Чтобы возникло зрительное ощущение, свет должен обладать некоторой минимальной (пороговой) энергией. Минимальное количество квантов света, необходимое для возникновения ощущения света в темноте , колеблется от 8 до 47. Одна палочка может быть возбуждена всего 1 квантом света. Таким образом, чувствительность рецепторов сетчатки в наиболее благоприятных условиях световосприятия предельна. Одиночные палочки и колбочки сетчатки различаются по световой чувствительности незначительно. Однако количество фоторецепторов, посылающих сигналы на одну ганглиозную клетку, в центре и на периферии сетчатки различно. Количество колбочек в рецептивном поле в центре сетчатки примерно в 100 раз меньше количества палочек в рецептивном поле на периферии сетчатки. Соответственно и чувствительность палочковой системы в 100 раз выше, чем у колбочковой.

2.11. Зрительная адаптация

При переходе от темноты к свету наступает временное ослепление, а затем чувствительность глаза постепенно снижается. Это приспособление зрительной системы к условиям яркой освещённости называется световой адаптацией. Обратное явление (темновая адаптация) наблюдается, когда из светлого помещения человек переходит в почти не освещённое помещение. В первое время он почти ничего не видит из-за пониженной возбудимости фоторецепторов и зрительных нейронов. Постепенно начинают выявляться контуры предметов, а затем различаются и их детали, так как чувствительность фоторецепторов и зрительных нейронов в темноте постепенно повышается.

Повышение световой чувствительности во время пребывания в темноте происходит неравномерно: в первые 10 мин она увеличивается в десятки раз, а затем, в течение часа - в десятки тысяч раз. Важную роль в этом процессе играет восстановление зрительных пигментов. Так как в темноте чувствительны только палочки, слабо освещённый предмет виден лишь периферическим зрением. Существенную роль в адаптации, помимо зрительных пигментов, играет переключение связей между элементами сетчатки. В темноте площадь возбудительного центра рецептивного поля ганглиозной клетки увеличивается из-за ослабления кольцевого торможения, что приводит к увеличению световой чувствительности. Световая чувствительность глаза зависит и от влияний, идущих со стороны мозга. Освещение одного глаза понижает световую чувствительность неосвещённого глаза. Кроме того, на чувствительность к свету оказывают влияние также звуковые, обонятельные и вкусовые сигналы.

2.12. Дифференциальная чувствительность зрения

Если на освещённую поверхность с яркостью I падает добавочное освещение dI, то, согласно закону Вебера, человек заметит разницу в освещённости только если dI/I = K, где K константа, равная 0,01-0,015. Величину dI/I называют дифференциальным порогом световой чувствительности. Отношение dI/I при разных освещённостях постоянно и означает, что для восприятия разницы в освещённости двух поверхностей одна из них должна быть ярче другой на 1 - 1,5 %.

2.13. Яркостной контраст

Взаимное латеральное торможение зрительных нейронов (см. гл. 3) лежит в основе общего, или глобального яркостного контраста. Так, серая полоска бумаги, лежащая на светлом фоне, кажется темнее такой же полоски, лежащей на тёмном фоне. Это объясняется тем, что светлый фон возбуждает множество нейронов сетчатки, а их возбуждение притормаживает клетки, активированные полоской. Наиболее сильно латеральное торможение действует между близко расположенными нейронами, создавая эффект локального контраста. Происходит кажущееся усиление перепада яркости на границе поверхностей разной освещённости. Этот эффект называют также подчёркиванием контуров, или эффектом Маха: на границе яркого светового поля и более тёмной поверхности можно видеть две дополнительные линии (ещё более яркую линию на границе светлого поля и очень тёмную линию на границе тёмной поверхности).

2.14. Слепящая яркость света

Слишком яркий свет вызывает неприятное ощущение ослепления. Верхняя граница слепящей яркости зависит от адаптации глаза: чем дольше была темновая адаптация, тем меньшая яркость света вызывает ослепление. Если в поле зрения попадают очень яркие (слепящие) объекты, то они ухудшают различение сигналов на значительной части сетчатки (так, на ночной дороге водителей ослепляют фары встречных машин). При тонких работах, связанных с напряжением зрения (длительное чтение, работа на компьютере, сборка мелких деталей), следует пользоваться только рассеянным светом, не ослепляющим глаз.

2.15. Инерция зрения, слитие мельканий, последовательные образы

Зрительное ощущение появляется не мгновенно. Прежде чем возникнет ощущение, в зрительной системе должны произойти многократные преобразования и передача сигналов. Время "инерции зрения", необходимое для возникновения зрительного ощущения, в среднем равно 0,03 - 0,1 с. Следует отметить, что это ощущение также исчезает не сразу после того, как прекратилось раздражение - оно держится ещё некоторое время. Если в темноте водить по воздуху горящей спичкой, то мы увидим светящуюся линию, так как быстро следующие одно за другим световые раздражения сливаются в непрерывное ощущение. Минимальная частота следования световых стимулов (например, вспышек света), при которой происходит объединение отдельных ощущений, называется критической частотой слития мельканий. При средних освещённостях эта частота равна 10-15 вспышкам в 1 с. На этом свойстве зрения основаны кино и телевидение: мы не видим промежутков между отдельными кадрами (24 кадра в 1 с в кино), так как зрительное ощущение от одного кадра ещё длится до появления следующего. Это и обеспечивает иллюзию непрерывности изображения и его движения.

Ощущения, продолжающиеся после прекращения раздражения, называются последовательными образами. Если посмотреть на включённую лампу и закрыть глаза, то она видна ещё в течение некоторого времени. Если же после фиксации взгляда на освещённом предмете перевести взгляд на светлый фон, то некоторое время можно видеть негативное изображение этого предмета, т.е. светлые его части - тёмными, а тёмные - светлыми (отрицательный последовательный образ). Это объясняется тем, что возбуждение от освещённого объекта локально тормозит (адаптирует) определённые участки сетчатки; если после этого перевести взор на равномерно освещённый экран, то его свет сильнее возбудит те участки, которые не были возбуждены ранее.

2.16. Цветовое зрение

Весь видимый нами спектр электромагнитных излучений заключен между коротковолновым (длина волны 400 нм) излучением, которое мы называем фиолетовым цветом, и длинноволновым излучением (длина волны 700 нм), называемым красным цветом. Остальные цвета видимого спектра (синий, зеленый, жёлтый и оранжевый) имеют промежуточные значения длины волны. Смешение лучей всех цветов даёт белый цвет. Он может быть получен и при смешении двух так называемых парных дополнительных цветов: красного и синего, жёлтого и синего. Если произвести смешение трёх основных цветов (красного, зеленого и синего), то могут быть получены любые цвета.

Максимальным признанием пользуется трёхкомпонентная теория Г. Гельмгольца, согласно которой цветовое восприятие обеспечивается тремя типами колбочек с различной цветовой чувствительностью. Одни из них чувствительны к красному цвету, другие - к зеленому, а третьи - к синему. Всякий цвет оказывает воздействие на все три цветоощущающих элемента, но в разной степени. Эта теория прямо подтверждена в опытах, в которых измеряли поглощение излучений с разной длиной волны в одиночных колбочках сетчатки человека.

Частичная цветовая слепота была описана в конце XVIII в. Д. Дальтоном, который сам страдал ею. Поэтому аномалию цветовосприятия обозначили термином "дальтонизм". Дальтонизм встречается у 8% мужчин; его связывают с отсутствием определённых генов в определяющей пол непарной у мужчин X-хромосоме. Для диагностики дальтонизма, важной при профессиональном отборе, используют полихроматические таблицы. Люди, страдающие им, не могут быть полноценными водителями транспорта, так как они могут не различать цвет огней светофоров и дорожных знаков. Существуют три разновидности частичной цветовой слепоты: протанопия, дейтеранопия и тританопия. Каждая из них характеризуется отсутствием восприятия одного из трёх основных цветов. Люди, страдающие протанопией ("краснослепые"), не воспринимают красного цвета, сине-голубые лучи кажутся им бесцветными. Лица, страдающие дейтеранопией ("зеленослепые"), не отличают зеленые цвета от тёмно-красных и голубых. При тританопии (редко встречающейся аномалии цветового зрения) не воспринимаются лучи синего и фиолетового цвета. Все перечисленные виды частичной цветовой слепоты хорошо объясняются трёхкомпонентной теорией. Каждый из них является результатом отсутствия одного из трёх колбочковых цветовоспринимающих веществ.

2.17. Восприятие пространства

Остротой зрения называется максимальная способность различать отдельные детали объектов. Её определяют по наименьшему расстоянию между двумя точками, которые различает глаз, т.е. видит отдельно, а не слитно. Нормальный глаз различает две точки, расстояние между которыми составляет 1 угловую минуту. Максимальную остроту зрения имеет центр сетчатки - жёлтое пятно. К периферии от него острота зрения намного меньше. Острота зрения измеряется при помощи специальных таблиц, которые состоят из нескольких рядов букв или незамкнутых окружностей различной величины. Острота зрения, определённая по таблице, выражается в относительных величинах, причём нормальная острота принимается за единицу. Встречаются люди, обладающие сверхостротой зрения (visus больше 2).

Поле зрения. Если фиксировать взглядом небольшой предмет, то его изображение проецируется на жёлтое пятно сетчатки. В этом случае мы видим предмет центральным зрением. Его угловой размер у человека составляет всего 1,5-2 угловых градуса. Предметы, изображения которых падают на остальные участки сетчатки, воспринимаются периферическим зрением. Пространство, видимое глазом при фиксации взгляда в одной точке, называется полем зрения. Измерение границы поля зрения производят по периметру. Границы поля зрения для бесцветных предметов составляют книзу 70, кверху - 60, внутрь - 60 и кнаружи - 90 градусов. Поля зрения обоих глаз у человека частично совпадают, что имеет большое значение для восприятия глубины пространства. Поля зрения для различных цветов неодинаковы и меньше, чем для чёрно-белых объектов.

Бинокулярное зрение - это зрение двумя глазами. При взгляде на какой-либо предмет у человека с нормальным зрением не возникает ощущения двух предметов, хотя и имеется два изображения на двух сетчатках. Изображение каждой точки этого предмета попадает на так называемые корреспондирующие, или соответственные участки двух сетчаток, и в восприятии человека два изображения сливаются в одно. Если надавить слегка на один глаз сбоку, то начнёт двоиться в глазах, потому что нарушилось соответствие сетчаток. Если же смотреть на близкий предмет, то изображение какой-либо более отдалённой точки попадает на неидентичные (диспаратные) точки двух сетчаток. Диспарация играет большую роль в оценке расстояния и, следовательно, в видении глубины пространства. Человек способен заметить изменение глубины, создающее сдвиг изображения на сетчатках на несколько угловых секунд. Бинокулярное слитие или объединение сигналов от двух сетчаток в единый нервный образ происходит в первичной зрительной коре мозга.

Оценка величины объекта. Величина знакомого предмета оценивается как функция величины его изображения на сетчатке и расстояния предмета от глаз. В случае, когда расстояние до незнакомого предмета оценить трудно, возможны грубые ошибки в определении его величины.

Оценка расстояния. Восприятие глубины пространства и оценка расстояния до объекта возможны как при зрении одним глазом (монокулярное зрение), так и двумя глазами (бинокулярное зрение). Во втором случае оценка расстояния гораздо точнее. Некоторое значение в оценке близких расстояний при монокулярном зрении имеет явление аккомодации. Для оценки расстояния имеет значение также то, что образ знакомого предмета на сетчатке тем больше, чем он ближе.

Роль движения глаз для зрения. При рассматривании любых предметов глаза двигаются. Глазные движения осуществляют 6 мышц, прикреплённых к глазному яблоку. Движение двух глаз совершается одновременно и содружественно. Рассматривая близкие предметы, необходимо сводить (конвергенция), а рассматривая далекие предметы - разводить зрительные оси двух глаз (дивергенция). Важная роль движений глаз для зрения определяется также тем, что для непрерывного получения мозгом зрительной информации необходимо движение изображения на сетчатке. Импульсы в зрительном нерве возникают в момент включения и выключения светового изображения. При длящемся действии света на одни и те же фоторецепторы импульсация в волокнах зрительного нерва быстро прекращается и зрительное ощущение при неподвижных глазах и объектах исчезает через 1-2 с. Если на глаз поставить присоску с крохотным источником света, то человек видит его только в момент включения или выключения, так как этот раздражитель движется вместе с глазом и, следовательно, неподвижен по отношению к сетчатке. Чтобы преодолеть такое приспособление (адаптацию) к неподвижному изображению, глаз при рассматривании любого предмета производит неощущаемые человеком непрерывные скачки (саккады). Вследствие каждого скачка изображение на сетчатке смещается с одних фоторецепторов на другие, вновь вызывая импульсацию ганглиозных клеток. Продолжительность каждого скачка равна сотым долям секунды, а амплитуда его не превышает 20 угловых градусов. Чем сложнее рассматриваемый объект, тем сложнее траектория движения глаз. Они как бы "прослеживают" контуры изображения (рис. 4.6), задерживаясь на наиболее информативных его участках (например, в лице это глаза). Кроме скачков, глаза непрерывно мелко дрожат и дрейфуют (медленно смещаются с точки фиксации взора). Эти движения также очень важны для зрительного восприятия.

Рис. 4.6. Траектория движения глаз (Б) при осматривании изображения Нефертити (А)

В палочках сетчатки человека и многих животных содержится пигмент родопсин, или зрительный пурпур, состав, свойства и химические превращения которого подробно изучены в последние десятилетия. В колбочках найден пигмент йодопсин. В колбочках имеются также пигменты хлоролаб и эритролаб; первый из них поглощает лучи, соответствующие зеленой, а второй – красной части спектра.

Родопсин представляет собой высокомолекулярное соединение (молекулярная масса 270000), состоящее из ретиналя – альдегида витамина А и балка опсина. При действии кванта света происходит цикл фотофизических и фотохимических превращений этого вещества: ретиналь изомеризуется, его боковая цепь выпрямляется, связь ретиналя с белком нарушается, активируются ферментативные центры белковой молекулы. Конформационное изменение молекул пигмента активирует ионы Са2+, которые посредством диффузии достигают натриевых каналов, вследствие чего проводимость для Na+ снижается. В результате снижения натриевой проводимости возникает увеличение электроотрицательности внутри фоторецепторной клетки по отношению к внеклеточному пространству. После чего ретиналь отщепляется от опсина. Под влиянием фермента, названного редуктазой ретиналя, последний переходит в витамин А.

При затемнении глаз происходит регенерация зрительного пурпура, т.е. ресинтез родопсина. Для этого процесса необходимо, чтобы сетчатка получала цис-изомер витамина А, из которого образуется ретиналь. Если же витамин А в организме отсутствует, образование родопсина резко нарушается, что и приводит к развитию куринной слепоты.

Фотохимические процессы в сетчатке происходит весьма экономно, т.е. при действии даже очень яркого света расщепляется только небольшая часть имеющегося в палочках родопсина.

Структура йодопсина близка к родопсину. Йодопсин представляет собой также соединение ретиналя с белком опсином, который образуется в колбочках и отличается от опсина палочек.

Поглощение света родопсином и йодопсином различно. Йодопсин в наибольшей степени поглощает желтый свет с длиной волны около 560 нм.

Сетчатка представляет собой довольно сложную нейронную сеть с горизонтальными и вертикальными связями между фоторецепторами и клетками. Биполярные клетки сетчатки передают сигналы от фоторецепторов в слой ганглиозных клеток и к амакриновым клеткам (вертикальная связь). Горизонтальные и амакриновые клетки участвуют в горизонтальной передаче сигналов между соседними фоторецепторами и ганглиозными клетками.

Электрические явления в сетчатке привлекли внимание исследователей после того, как были открыты колебания разницы потенциалов сетчатки в зависимости от условий ее освещения. Запись этого процесса называется электроретинограммой (ЭРГ). Важным методом изучения светочувствительных элементов сетчатки является способ регистрации электрической активности отдельных волокон зрительного нерва при действии света на глаз. Такая методика позволила установить наличие трех основных групп светочувствительных элементов. Первая из них посылает импульсы в течение всего времени действия светового раздражителя, обнаруживая только некоторое уменьшение их частоты по мере адаптации к свету. Вторая возбуждается и, следовательно, посылает импульсы только при освещении и затемнении глаза. Третья группа реагирует возбуждением только на затемнение; светочувствительные элементы этой категории посылают импульсы во время темноты и тормозятся под влиянием освещения глаза. Каждая из трех перечисленных групп фоторецепторов сетчатки характеризуется свойственным этой группе изменением электрического состояния при освещении глаза; ЭРГ представляет собой суммарную кривую, результирующую всех трех электрических процессов в сетчатке. Среди палочковых элементов сетчатки преобладают светочувствительные элементы I группы. Колбочки относятся главным образом к фоторецепторам II и III групп. Электрическая энергия, освобождающаяся в сетчатке, обязана своим происхождением протекающим в ней процессам метаболизма.

Электрическая активность центров зрительной системы. Электрические явления в сетчатке и зрительном нерве. При действии света в рецепторах, а затем и в нейронах сетчатки генерируются электрические потенциалы, отражающие параметры действующего раздражителя.

Суммарный электрический ответ сетчатки глаза на действие света называют электроретинограммой (ЭРГ). Она может быть зарегистрирована от целого глаза или непосредственно от сетчатки. Для этого один электрод помещают на поверхность роговой оболочки, а другой - на коже лица вблизи глаза либо на мочку уха. На электроретинограмме различают несколько характерных волн (рис. 14.8). Волна а отражает возбуждение внутренних сегментов фоторецепторов (поздний рецепторный потенциал) и горизонтальных клеток. Волна b возникает в результате активации глиальных (мюллеровских) клеток сетчатки ионами калия, выделяющимися при возбуждении биполярных и амакриновых нейронов. Волна с отражает активацию клеток пигментного эпителия, а волна d - горизонтальных клеток.

На ЭРГ хорошо отражаются интенсивность, цвет, размер и длительность действия светового раздражителя. Амплитуда всех волн ЭРГ увеличивается пропорционально логарифму силы света и времени, в течение которого глаз находился в темноте. Волна d (реакция на выключение) тем больше, чем дольше действовал свет. Поскольку в ЭРГ отражена активность почти всех клеток сетчатки (кроме ганглиозных), этот показатель широко используется в клинике глазных болезней для диагностики и контроля лечения при различных заболеваниях сетчатки.

Возбуждение ганглиозных клеток сетчатки приводит к тому, что по их аксонам (волокнам зрительного нерва) в мозг устрем ляются импульсы. Ганглиозная клетка сетчатки - это первый нейрон «классического» типа в цепи фоторецептор - мозг. Описано три основных типа ганглиозных клеток: отвечающие на включение (on-реакция), на выключение (off-реакция) света и на то и другое (on-off-реакция) (рис. 14.9).

Диаметр рецептивных полей ганглиозных клеток в центре сетчатки значительно меньше, чем на периферии. Эти рецептивные поля имеют круглую форму и концентрически построены: круглый возбудительный центр и кольцевая тормозная периферическая зона или наоборот. При увеличении размера светового пятнышка, вспыхивающего в центре рецептивного поля, ответ ганглиозной клетки увеличивается (пространственная суммация). Одновременное возбуждение близко расположенных ганглиозных клеток приводит к их взаимному торможению: ответы каждой клетки делаются меньше, чем при одиночном раздражении. В основе этого эффекта лежит латеральное, или боковое, торможение. Рецептивные поля соседних ганглиозных клеток частично перекрываются, так что одни и те же рецепторы могут участвовать в генерации ответов нескольких нейронов. Благодаря круглой форме рецептивные поля ганглиозных клеток сетчатки производят так называемое поточечное описание сетчаточного изображения: оно отображается очень тонкой мозаикой, состоящей из возбужденных нейронов

Суммарный электрический потенциал, который отводится от сетчатки, называется электроретинограмме. Записать его можно "наложив один электрод на поверхность роговицы, а второй - на кожу возле глаза. Этот потенциал отражает сумму электрических потоков, проходящих через плазматическую мембрану пигментных клеток и фоторецепторов. Считают, что а-волна является суммой рецепторных потенциалов, b-волна отражает изменение мембранных потенциалов глиальных клеток, е-волна - клеток пигментного эпителия, d-волна образуется за счет изменения мембранных потенциалов в нейронах сетчатки.

Внутреняя оболочка глаза-сетчатка-является рецепторным отделом зрительного анализатора,в котором происходит восприятие света и првичный анализ зрительных ощущений. Луч света,проходя через роговицу,хрусталик,стекловидное тело и всю толщу сетчатки,вначале попадает на наружный(наиболее удаленный от зрачка слой клеток пигментного эпителия. Пигмент,расположенный в этих клетках,поглощает свет,препятствую тем самым его отражению и рассеиванию,что способствует четкости восприятия.К пигментному слою изнутри прилегают фоторецепторные клетки-палочки и колбочки,расположенные неравномерно(в области желтого пятна находятся только колбочки,по направлению к периферии кол-во колбочек уменьш,а палочек увелич)Палочки отвечают за сумеречное видение,колбочки-за цветовое.Микроскопически сетчатка представляет собой цепь 3х нейронов: фоторецепторы-наружный нейрон,ассоциативный-средний,ганглионарный-внутр.Передачу нервного импульса с 1 на 2 нейрон обеспечиваю синапсы в наружном(плексиформном) слое.2нейрон-биполярная клетка,кот одним отростком контактирует с фотосенсорной клеткой,а другим-с с дентридами ганглиозным клеток.Биполярные клетки контактирую с несколькими палочками и лишь с одной колбочкой.Фоторецепторы,соединенные с одной клеткой,образуют рецетивное поле ганглиозной клетки.Аксоны третьих клеток,слваясь,образуют ствол зрительного нерва.

Фотохимические процессы в сетчатке глаза . В рецепторных клетках сетчатки нахо­дятся светочувствительные пигменты - сложные белковые вещества хромопротеиды, которые обесцвечиваются на свету. В палоч­ках на мембране наружных сегментов содер­жится родопсин, в колбочках - йодопсин и другие пигменты. Родопсин и йодопсин состоят из ретиналя (альдегид витамина А,) и гликопротеида оп-сина.

Если в орга­низме снижается содержание витамина А, то процессы ресинтеза родопсина ослабевают, что приводит к нарушению сумеречного зре­ния - так называемой «куриной слепоте». При постоянном и равномерном освещении устанавливается равновесие между скорос­тью распада и ресинтеза пигментов. Когда количество света, падающего на сетчатку, уменьшается, это динамическое равновесие нарушается и сдвигается в сторону более вы­соких концентраций пигмента. Этот фотохи­мический феномен лежит в основе темновой адаптации.

Особое значение в фотохимических про­цессах имеет пигментный слой сетчатки, ко­торый образован эпителием, содержащим фусцин. Этот пигмент поглощает свет, пре- пятствуя отражению и рассеиванию его, что обеспечивает четкость зрительного воспри­ятия. Отростки пигментных клеток окружают светочувствительные членики палочек и кол­бочек, принимая участие в обмене веществ фоторецепторов и в синтезе зрительных пиг­ментов.

В фоторецепторах глаза при действии света вследствие фотохимических процессов возникает рецепторный потенциал вследст­вие гиперполяризации мембраны рецептора. Это отличительная черта зрительных рецеп­торов, активация других рецепторов выража­ется в виде деполяризации их мембраны. Амплитуда зрительного рецепторного потен­циала увеличивается при увеличении интен­сивности светового стимула.

Движения глаз играют весьма важную роль в зрительном восприятии. Даже в том случае, когда наблюдатель фиксирует взглядом неподвижную точку, глаз не находится в покое, а все время совершает небольшие движения, которые являются непроизвольными. Движения глаз выполняют функцию дезадаптации при рассматривании неподвижных объектов. Другая функция мелких движений глаза – удерживание изображения в зоне ясного видения.

В реальных условиях работы зрительной системы глаза все время перемещаются, обследуя наиболее информативные участки поля зрения. При этом одни движения глаз позволяют рассматривать предметы, расположенные на одном удалении от наблюдателя, например, при чтении или рассматривании картины, другие – при рассматривании объектов, находящихся на разном удалении от него. Первый тип движений – это однонаправленные движения обоих глаз, в то время как второй осуществляет сведение или разведение зрительных осей, т.е. движения направлены в противоположные стороны.

Показано, что перевод глаз с одних объектов на другие определяется их информативностью. Взор не задерживается на тех участках, которые содержат мало информации, и в то же время длительно фиксирует наиболее информативные участки (например, контуры объекта). Эта функция нарушается при поражении лобных долей. Движение глаз обеспечивает восприятие отдельных признаков предметов, их соотношение, на основе чего формируется целостный образ, хранящийся в долговременной памяти.

14.1.6. Взаимодействие сенсорных систем

Взаимодействие сенсорных систем осуществляется на спиналь-ном, ретикулярном, таламическом и корковом уровнях. Особенно широка интеграция сигналов в ретикулярной формации. В коре большого мозга происходит интеграция сигналов высшего поряд­ка. В результате образования множественных связей с другими сен­сорными и неспецифическими системами многие корковые нейроны приобретают способность отвечать на сложные комбинации сигна­лов разной модальности. Это особенно свойственно нервным клет­кам ассоциативных областей коры больших полушарий, которые обладают высокой пластичностью, что обеспечивает перестройку их

свойств в процессе непрерывного обучения опознанию новых раздражителей. Межсенсорное (кросс-модальное) взаимодействие на корковом уровне создает условия для формирования «схемы (или карты) мира» и непрерывной увязки, координации с ней собственной «схемы тела» организма.

14.2. ЧАСТНАЯ ФИЗИОЛОГИЯ СЕНСОРНЫХ СИСТЕМ

14.2.1. Зрительная система

Зрение эволюционно приспособлено к восприятию электро­магнитных излучений в определенной, весьма узкой части их диа­пазона (видимый свет). Зрительная система дает мозгу более 90% сенсорной информации. Зрение - многозвеньевой процесс, начи­нающийся с проекции изображения на сетчатку уникального периферического оптического прибора - глаза. Затем происходят возбуждение фоторецепторов, передача и преобразование зри­тельной информации в нейронных слоях зрительной системы, а заканчивается зрительное восприятие принятием высшими корко­выми отделами этой системы решения о зрительном образе.

Строение и функции оптического аппарата глаза. Глазное яблоко имеет шарообразную форму, что облегчает его повороты для наведения на рассматриваемый объект. На пути к светочув­ствительной оболочке глаза (сетчатке) лучи света проходят через несколько прозрачных сред - роговицу, хрусталик и стекловид­ное тело. Определенная кривизна и показатель преломления рого­вицы и в меньшей мере хрусталика определяют преломление све­товых лучей внутри глаза (рис. 14.2).

Преломляющую силу любой оптической системы выражают в диоптриях (D). Одна диоптрия равна преломляющей силе линзы с фокусным расстоянием 100 см. Преломляющая сила здорового глаза составляет 59D при рассматривании далеких и 70,5D - при рассматривании близких предметов. Чтобы схематически предста­вить проекцию изображения предмета на сетчатку, нужно провести линии от его концов через узловую точку (в 7 мм сзади от роговой

оболочки). На сетчатке получается изображение, резко уменьшен­ное и перевернутое вверх ногами и справа налево (рис. 14.3).

Аккомодация. Аккомодацией называют приспособление глаза к ясному видению объектов, удаленных на разное рассстоя-ние. Для ясного видения объекта необходимо, чтобы он был сфо­кусирован на сетчатке, т. е. чтобы лучи от всех точек его поверхно­сти проецировались на поверхность сетчатки (рис. 14.4). Когда мы смотрим на далекие предметы (А), их изображение (а) сфокуси­ровано на сетчатке и они видны ясно. Зато изображение (б) близ­ких предметов (Б) при этом расплывчато, так как лучи от них собираются за сетчаткой. Главную роль в аккомодации играет хрусталик, изменяющий свою кривизну и, следовательно, пре­ломляющую способность. При рассматривании близких предметов хрусталик делается более выпуклым (см. рис. 14.2), благодаря чему лучи, расходящиеся от какой-либо точки объекта, сходятся на сетчатке. Механизмом аккомодации является сокращение рес­ничных мышц, которые изменяют выпуклость хрусталика. Хруста­лик заключен в тонкую прозрачную капсулу, которую всегда рас­тягивают, т. е. уплощают, волокна ресничного пояска (циннова связка). Сокращение гладких мышечных клеток ресничного тела уменьшает тягу цинновых связок, что увеличивает выпуклость хрусталика в силу его эластичности. Ресничные мышцы иннерви-руются парасимпатическими волокнами глазодвигательного нерва. Введение в глаз атропина вызывает нарушение передачи возбуж­дения к этой мышце, ограничивает аккомодацию глаза при рас­сматривании близких предметов. Наоборот, парасимпатомиметиче-ские вещества - пилокарпин и эзерин - вызывают сокращение этой мышцы.

Для нормального глаза молодого человека дальняя точка ясно­го видения лежит в бесконечности. Далекие предметы он рассмат­ривает без всякого напряжения аккомодации, т. е. без сокращения

ресничной мышцы. Ближайшая точка ясного видения находится на расстоянии 10 см от глаза.

Старческая дальнозоркость. Хрусталик с возрастом теряет эластичность, и при изменении натяжения цинновых связок его кривизна меняется мало. Поэтому ближайшая точка ясного виде­ния находится теперь не на расстоянии 10 см от глаза, а отодвига­ется от него. Близкие предметы при этом видны плохо. Это со­стояние называется старческой дальнозоркостью, или пресбио­пией. Пожилые люди вынуждены пользоваться очками с двояко­выпуклыми линзами.

Аномалии рефракции глаза. Две главные аномалии рефракции глаза - близорукость, или миопия, и дальнозоркость, или гипер-метропия, - обусловлены не недостаточностью преломляющих сред глаза, а изменением длины глазного яблока (рис. 14.5, А).

Близорукость. Если продольная ось глаза слишком длинная, то лучи от далекого объекта сфокусируются не на сет­чатке, а перед ней, в стекловидном теле (рис. 14.5, Б). Такой глаз называется близоруким, или миопическим. Чтобы ясно видеть вдаль, необходимо перед близорукими глазами поместить вогнутые стекла, которые отодвинут сфокусированное изображение на сет­чатку (рис. 14.5, В).

Дальнозоркость. Противоположна близорукости даль­нозоркость, или гиперметропия. В дальнозорком глазу (рис. 14.5, Г) продольная ось глаза укорочена, и поэтому лучи от дале­кого объекта фокусируются не на сетчатке, а за ней. Этот недо­статок рефракции может быть компенсирован аккомодационным усилием, т. е. увеличением выпуклости хрусталика. Поэтому даль­нозоркий человек напрягает аккомодационную мышцу, рассматри­вая не только близкие, но и далекие объекты. При рассматрива­нии близких объектов аккомодационные усилия дальнозорких лю-

дей недостаточны. Поэтому для чтения дальнозоркие люди долж­ны надевать очки с двояковыпуклыми линзами, усиливающими преломление света (рис. 14.5, Д). Гиперметропию не следует путать со старческой дальнозоркостью. Общее у них лишь то, что необ­ходимо пользоваться очками с двояковыпуклыми линзами.

Астигматизм. К аномалиям рефракции относится также астигматизм, т. е. неодинаковое преломление лучей в разных на­правлениях (например, по горизонтальному и вертикальному ме­ридиану). Астигматизм обусловлен не строго сферической по­верхностью роговой оболочки. При астигматизме сильных степе­ней эта поверхность может приближаться к цилиндрической, что исправляется цилиндрическими очковыми стеклами, компенсирую­щими недостатки роговицы.

Зрачок и зрачковый рефлекс. Зрачком называют отверстие в центре радужной оболочки, через которое лучи света проходят внутрь глаза. Зрачок повышает четкость изображения на сетчатке, увеличивая глубину резкости глаза. Пропуская только центральные лучи, он улучшает изображение на сетчатке также за счет устранения сферической аберрации. Если прикрыть глаз от света, а затем открыть его, то расширившийся при затемнении зрачок быстро сужается («зрачковый рефлекс»). Мышцы радуж­ной оболочки изменяют величину зрачка, регулируя поток света, попадающий в глаз. Так, на очень ярком свету зрачок имеет мини­мальный диаметр (1,8 мм), при средней дневной освещенности он расширяется (2,4 мм), а в темноте расширение максимально (7,5 мм). Это приводит к ухудшению качества изображения на сетчатке, но увеличивает чувствительность зрения. Предельное изменение диаметра зрачка изменяет его площадь примерно в 17 раз. Во столько же раз меняется при этом световой поток. Между интенсивностью освещения и диаметром зрачка имеется логарифмическая зависимость. Реакция зрачка на изменение освещенности имеет адаптивный характер, так как в небольшом диапазоне стабилизирует освещенность сетчатки.

В радужной оболочке имеется два вида мышечных волокон, окружающих зрачок: кольцевые (m. sphincter iridis), иннервируе-мые парасимпатическими волокнами глазодвигательного нерва, а также радиальные (m. dilatator iridis), иннервируемые симпатиче­скими нервами. Сокращение первых вызывает сужение, сокраще­ние вторых - расширение зрачка. Соответственно этому ацетил-холин и эзерин вызывают сужение, а адреналин - расширение зрачка. Зрачки расширяются во время боли, при гипоксии, а также при эмоциях, усиливающих возбуждение симпатической системы (страх, ярость). Расширение зрачков - важный симптом ряда патологических состояний, например болевого шока, гипоксии.

У здоровых людей размеры зрачков обоих глаз одинаковые. При освещении одного глаза зрачок другого тоже суживается; такая реакция называется содружественной. В некоторых патоло­гических случаях размеры зрачков обоих глаз различны (анизо-кория).

Структура и функции сетчатки. Сетчатка представляет собой внутреннюю светочувствительную оболочку глаза. Она имеет слож­ную многослойную структуру (рис. 14.6). Здесь расположены два вида вторично-чувствующих, различных по своему функциональ­ному значению фоторецепторов (палочковые и колбочковые) и несколько видов нервных клеток. Возбуждение фоторецепторов активирует первую нервную клетку сетчатки (биполярный ней­рон). Возбуждение биполярных нейронов активирует ганглиозные клетки сетчатки, передающие свои импульсные сигналы в подкор­ковые зрительные центры. В процессах передачи и переработки информации в сетчатке участвуют также горизонтальные и ама-криновые клетки. Все перечисленные нейроны сетчатки с их от­ростками образуют нервный аппарат глаза, который не только передает информацию в зрительные центры мозга, но и участвует в ее анализе и переработке. Поэтому сетчатку называют частью мозга, вынесенной на периферию.

Место выхода зрительного нерва из глазного яблока - диск зрительного нерва, называют слепым пятном. Оно не содержит фоторецепторов и поэтому нечувствительно к свету. Мы не ощу­щаем наличия «дыры» в сетчатке.

Рассмотрим структуру и функции слоев сетчатки, следуя от наружного (заднего, наиболее удаленного от зрачка) слоя сет­чатки к внутреннему (расположенному ближе к зрачку) ее слою.

Пигментный слой. Этот слой образован одним рядом эпителиальных клеток, содержащих большое количество различ­ных внутриклеточных органелл, включая меланосомы, придающие этому слою черный цвет. Этот пигмент, называемый также экра­нирующим пигментом, поглощает Доходящий до него свет, пре­пятствуя тем самым его отражению и рассеиванию, что способ­ствует четкости зрительного восприятия. Клетки пигментного эпи­телия имеют многочисленные отростки, которые плотно окружают светочувствительные наружные сегменты палочек и колбочек, Пигментный эпителий играет решающую роль в целом ряде функ­ций, в том числе в ресинтезе (регенерации) зрительного пигмента после его обесцвечивания, в фагоцитозе и переваривании обломков наружных сегментов палочек и колбочек, иными словами, в меха­низме постоянного обновления наружных сегментов зрительных клеток, в защите зрительных клеток от опасности светового по­вреждения, а также в переносе к фоторецепторам кислорода и других необходимых им веществ. Следует отметить, что контакт между клетками пигментного эпителия и фоторецепторами доста­точно слабый. Именно в этом месте происходит отслойка сет­чатки - опасное заболевание глаз. Отслойка сетчатки приводит к нарушению зрения не только вследствие ее смещения с места оптического фокусирования изображения, но и вследствие дегене­рации рецепторов из-за нарушения контакта с пигментным эпите­лием, что приводит к серьезнейшему нарушению метаболизма самих рецепторов. Метаболические нарушения усугубляются тем, что нарушается доставка питательных веществ из капилляров

сосудистой оболочки глаза, а сам слой фоторецепторов капилляров не содержит (аваскуляризован).

Фоторецепторы. К пигментному слою изнутри примы­кает слой фоторецепторов: палочек и колбочек. В сетчатке каж­дого глаза человека находится 6-7 млн колбочек и 110-123 млн палочек. Они распределены в сетчатке неравномерно. Центральная ямка сетчатки (fovea centralis) содержит только колбочки (до 140 тыс. на 1 мм 2). По направлению к периферии сетчатки их число уменьшается, а число палочек возрастает, так что на даль­ней периферии имеются только палочки. Колбочки функциони­руют в условиях больших освещенностей, они обеспечивают днев­ное и цветовое зрение; намного более светочувствительные па­лочки ответственны за сумеречное зрение.

Цвет воспринимается лучше всего при действии света на цент­ральную ямку сетчатки, где расположены почти исключительно колбочки. Здесь же и наибольшая острота зрения. По мере удале­ния от центра сетчатки восприятие цвета и пространственное раз­решение становятся все хуже. Периферия сетчатки, где находятся исключительно палочки, не воспринимает цвета. Зато световая чувствительность колбочкового аппарата сетчатки во много раз меньше, чем палочкового, поэтому в сумерках из-за резкого пони­жения «колбочкового» зрения и преобладания «периферического» зрения мы не различаем цвет («ночью все кошки серы»).

Нарушение функции палочек, возникающее при недостатке в пище витамина А, вызывает расстройство сумеречного зрения - так называемую куриную слепоту: человек совершенно слепнет в сумерках, но днем зрение остается нормальным. Наоборот, при поражении колбочек возникает светобоязнь: человек видит при слабом свете, но слепнет при ярком освещении. В этом случае может развиться и полная цветовая слепота - ахромазия.

Строение фоторецепторной клетки. Фоторецепторная клетка - палочка или колбочка - состоит из чувствительного к действию света наружного сегмента, содержащего зрительный пигмент, внутреннего сегмента, соединительной ножки, ядерной части с крупным ядром и пресинаптического окончания. Палочка и кол­бочка сетчатки обращены своими светочувствительными наруж­ными сегментами к пигментному эпителию, т. е. в сторону, проти­воположную свету. У человека наружный сегмент фоторецептора (палочка или колбочка) содержит около тысячи фоторецепторных дисков. Наружный сегмент палочки намного длиннее, чем колбоч­ки, и содержит больше зрительного пигмента. Это частично объяс­няет более высокую чувствительность палочки к свету: палочку

может возбудить всего один квант света, а для активации кол­бочки требуется больше сотни квантов.

Фоторецепторный диск образован двумя мембранами, соеди­ненными по краям. Мембрана диска - это типичная биологиче­ская мембрана, образованная двойным слоем молекул фосфо-липидов, между которыми находятся молекулы белка. Мембрана диска богата полиненасыщенными жирными кислотами, что обус­ловливает ее низкую вязкость. В результате этого молекулы белка в ней быстро вращаются и медленно перемещаются вдоль диска. Это позволяет белкам часто сталкиваться и при взаимодействии образовывать на короткое время функционально важные комп­лексы.

Внутренний сегмент фоторецептора соединен с наружным сег­ментом модифицированной ресничкой, которая содержит девять пар микротрубочек. Внутренний сегмент содержит крупное ядро и весь метаболический аппарат клетки, в том числе митохондрии, обеспечивающие энергетические потребности фоторецептора, и систему белкового синтеза, обеспечивающую обновление мембран наружного сегмента. Здесь происходят синтез и включение моле­кул зрительного пигмента в фоторецепторную мембрану диска. За час на границе внутреннего и наружного сегмента в среднем заново образуется три новых диска. Затем они медленно (у чело­века примерно в течение 2-3 нед) перемещаются от основания наружного сегмента палочки к его верхушке, В конце концов вер­хушка наружного сегмента, содержащая до сотни теперь уже ста­рых дисков, обламывается и фагоцитируется клетками пигментно­го слоя. Это один из важнейших механизмов защиты фоторецеп-торных клеток от накапливающихся в течение их световой жизни молекулярных дефектов.

Наружные сегменты колбочек также постоянно обновляются, но с меньшей скоростью. Интересно, что существует суточный ритм обновления: верхушки наружных сегментов палочек в основ­ном обламываются и фагоцитируются в утреннее и дневное время, а колбочек - в вечернее и ночное.

Пресинаптическое окончание рецептора содержит синаптичес-кую ленту, вокруг которой много синаптических пузырьков, со­держащих глутамат.

Зрительные пигменты. В палочках сетчатки человека содер­жится пигмент родопсин, или зрительный пурпур, максимум спект­ра поглощения которого находится в области 500 нанометров (нм). В наружных сегментах трех типов колбочек (сине-, зелено-и красно-чувствительных) содержится три типа зрительных пиг­ментов, максимумы спектров поглощения которых находятся в синей (420 нм), зеленой (531 нм) и красной (558 нм) частях спектра. Красный колбочковый пигмент получил название «йодо-псин». Молекула зрительного пигмента сравнительно небольшая (с молекулярной массой около 40 килодальтон), состоит из боль­шей белковой части (опсина) и меньшей хромофорной (ретиналь, или альдегид витамина А). Ретиналь может находиться в различ-

ных пространственных конфигурациях, т. е. изомерных формах, но только одна из них - 11-цис-изомер ретиналя выступает в качест­ве хромофорной группы всех известных зрительных пигментов. Источником ретиналя в организме служат каротиноиды, поэтому недостаток их приводит к дефициту витамина А и, как следствие, к недостаточному ресинтезу родопсина, что в свою очередь является причиной нарушения сумеречного зрения, или «куриной слепоты». Молекулярная физиология фоторецепции. Рассмотрим после­довательность изменений молекул в наружном сегменте палочки, ответственных за ее возбуждение (рис. 14.7, А). При поглощении кванта света молекулой зрительного пигмента (родопсина) в ней происходит мгновенная изомеризация ее хромофорной группы: 11-цис-ретиналь выпрямляется и превращается в полностыо-транс-ретиналь. Эта реакция длится около 1 пс (1 -12 с). Свет вы­полняет роль спускового, или триггерного, фактора, запускающего механизм фоторецепции. Вслед за фотоизомеризацией ретиналя происходят пространственные изменения в белковой части моле­кулы: она обесцвечивается и переходит в состояние метародоп-сина II. В результате этого молекула зрительного пигмента при-

обретает способность к взаимодействию с другим белком - при-мембранным гуанозинтрифосфат-связывающим белком трансдуци-ном (Т). В комплексе с метародопсином II трансдуцин переходит в активное состояние и обменивает связанный с ним в темноте гуанозиндифосфат (ГДФ) на гуанозинтрифосфат (ГТФ). Метаро-допсин II способен активировать около 500-1000 молекул транс-дуцина, что приводит к усилению светового сигнала.

Каждая активированная молекула трансдуцина, связанная с молекулой ГТФ, активирует одну молекулу другого примембранно-го белка - фермента фосфодиэстеразы (ФДЭ). Активированная ФДЭ с высокой скоростью разрушает молекулы циклического гуа-нозинмонофосфата (цГМФ). Каждая активированная молекула ФДЭ разрушает несколько тысяч молекул цГМФ - это еще один этап усиления сигнала в механизме фоторецепции. Результатом всех описанных событий, вызванных поглощением кванта света, становится падение концентрации свободного цГМФ в цитоплазме наружного сегмента рецептора. Это в свою очередь приводит к за­крытию ионных каналов в плазматической мембране наружного сегмента, которые были открыты в темноте и через которые внутрь клетки входили Na + и Са 2+ . Ионный канал закрывается вследст­вие того, что из-за падения концентрации свободного цГМФ в клетке от канала отходят молекулы цГМФ, которые были связаны с ним в темноте и держали его открытым.

Уменьшение или прекращение входа внутрь наружного сегмен­та Na + приводит к гиперполяризации клеточной мембраны, т. е. возникновению на ней рецепторного потенциала. На рис. 14.7, Б показаны направления ионных токов, текущих через плазматичес­кую мембрану фоторецептора в темноте. Градиенты концентрации Na + и К + поддерживаются на плазматической мембране палочки активной работой натрий-калиевого насоса, локализованного в мембране внутреннего сегмента.

Гиперполяризационный рецепторный потенциал, возникший на мембране наружного сегмента, распространяется затем вдоль клет­ки до ее пресинаптического окончания и приводит к уменьшению скорости выделения медиатора (глутамата). Таким образом, фо-торецепторный процесс завершается уменьшением скорости выде­ления нейромедиатора из пресинаптического окончания фоторе­цептора.

Не менее сложен и совершенен механизм восстановления ис­ходного темнового состояния фоторецептора, т. е. его способно­сти ответить на следующий световой стимул. Для этого необходи­мо вновь открыть ионные каналы в плазматической мембране. Открытое состояние канала обеспечивается его связью с молеку­лами цГМФ, что в свою очередь непосредственно обусловлено по­вышением концентрации свободного цГМФ в цитоплазме. Это по­вышение концентрации обеспечивается утратой метародопсином II способности взаимодействовать с трансдуцином и активацией фер­мента гуанилатциклазы (ГЦ), способного синтезировать цГМФ из ГТФ. Активацию этого фермента вызывает падение концентра-

ции в цитоплазме свободного кальция из-за закрытия ионного ка­нала мембраны и постоянной работы белка-обменника, выбрасы­вающего кальций из клетки. В результате всего этого концентра­ция цГМФ внутри клетки повышается и цГМФ вновь связывается с ионным каналом плазматической мембраны, открывая его. Через открытый канал внутрь клетки вновь начинают входить Na + и Са 2+ , деполяризуя мембрану рецептора и переводя его в «темно-вое» состояние. Из пресинаптического окончания деполяризован­ного рецептора вновь ускоряется выход медиатора.

Нейроны сетчатки. Фоторецепторы сетчатки синапти-чески связаны с биполярными нейронами (см. рис. 14.6, Б). При действии света уменьшается выделение медиатора (глутамата) из фоторецептора, что приводит к гиперполяризации мембраны бипо­лярного нейрона. От него нервный сигнал передается на ганглиоз-ные клетки, аксоны которых являются волокнами зрительного нерва. Передача сигнала как с фоторецептора на биполярный ней­рон, так и от него на ганглиозную клетку происходит безымпульс­ным путем. Биполярный нейрон не генерирует импульсов ввиду предельно малого расстояния, на которое он передает сигнал.

На 130 млн фоторецепторных клеток приходится только 1 млн 250 тыс. ганглиозных клеток, аксоны которых образуют зритель­ный нерв. Это значит, что импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганг­лиозной клетке. Фоторецепторы, соединенные с одной ганглиозной клеткой, образуют рецептивное поле ганглиозной клетки. Рецеп­тивные поля различных ганглиозных клеток частично перекрывают друг друга. Таким образом, каждая ганглиозная клетка суммирует возбуждение, возникающее в большом числе фоторецепторов. Это повышает световую чувствительность, но ухудшает пространствен­ное разрешение. Лишь в центре сетчатки, в районе центральной ямки, каждая колбочка соединена с одной так называемой карли­ковой биполярной клеткой, с которой соединена также всего одна ганглиозная клетка. Это обеспечивает здесь высокое пространст­венное разрешение, но резко уменьшает световую чувствитель­ность.

Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, через отростки ко­торых распространяются сигналы, меняющие синаптическую пе­редачу между фоторецепторами и биполярными клетками (гори­зонтальные клетки) и между биполярными и ганглиозными клет­ками (амакриновые клетки). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками.

Кроме афферентных волокон, в зрительном нерве есть и цент­робежные, или эфферентные, нервные волокна, приносящие к сет­чатке сигналы из мозга. Полагают, что эти импульсы действуют на синапсы между биполярными и ганлиозными клетками сетчат­ки, регулируя проведение возбуждения между ними.

Нервные пути и связи в зрительной системе. Из сетчатки зри­тельная информация по волокнам зрительного нерва (II пара

черепных нервов) устремляется в мозг. Зрительные нервы от каж­дого глаза встречаются у основания мозга, где формируется их частичный перекрест (хиазма). Здесь часть волокон каждого зри­тельного нерва переходит на противоположную от своего глаза сторону. Частичный перекрест волокон обеспечивает каждое по­лушарие большого мозга информацией от обоих глаз. Проекции эти организованы так, что в затылочную долю правого полушария поступают сигналы от правых половин каждой сетчатки, а в левое полушарие - от левых половин сетчаток.

После зрительного перекреста зрительные нервы называют зрительными трактами. Они проецируются в ряд мозговых струк­тур, но основное число волокон приходит в таламический подкор­ковый зрительный центр - латеральное, или наружное, коленчатое тело (НКТ). Отсюда сигналы поступают в первичную проекцион­ную область зрительной зоны коры (стриарная кора, или поле 17 по Бродману). Вся зрительная зона коры включает несколько полей, каждое из которых обеспечивает свои, специфические функции, но получает сигналы от всей сетчатки и в общем сохра­няет ее топологию, или ретинотопию (сигналы от соседних участ­ков сетчатки попадают в соседние участки коры).

Электрическая активность центров зрительной системы. Элек­ трические явления в сетчатке и зрительном нерве. При действии света в рецепторах, а затем и в нейронах сетчатки генерируются электрические потенциалы, отражающие параметры действующего раздражителя.

Суммарный электрический ответ сетчатки глаза на действие света называют электроретинограммой (ЭРГ). Она может быть зарегистрирована от целого глаза или непосредственно от сетчатки. Для этого один электрод помещают на поверхность роговой оболочки, а другой - на коже лица вблизи глаза либо на мочку уха. На электроретинограмме различают несколько харак­терных волн (рис. 14.8). Волна а отражает возбуждение внутрен­них сегментов фоторецепторов (поздний рецепторный потенциал) и горизонтальных клеток. Волна b возникает в результате актива­ции глиальных (мюллеровских) клеток сетчатки ионами калия, выделяющимися при возбуждении биполярных и амакриновых нейронов. Волна с отражает активацию клеток пигментного эпите­лия, а волна d - горизонтальных клеток.

На ЭРГ хорошо отражаются интенсивность, цвет, размер и длительность действия светового раздражителя. Амплитуда всех волн ЭРГ увеличивается пропорционально логарифму силы света «и времени, в течение которого глаз находился в темноте. Волна d (реакция на выключение) тем больше, чем дольше действовал свет. Поскольку в ЭРГ отражена активность почти всех клеток сетчатки (кроме ганглиозных), этот показатель широко используется в клинике глазных болезней для диагностики и контроля лечения при различных заболеваниях сетчатки.

Возбуждение ганглиозных клеток сетчатки приводит к тому, что по их аксонам (волокнам зрительного нерва) в мозг устрем-

ляются импульсы. Ганглиозная клетка сетчатки - это первый нейрон «классического» типа в цепи фоторецептор - мозг. Опи­сано три основных типа ганглиозных клеток: отвечающие на вклю­чение (оп-реакция), на выключение (off-реакция) света и на то и другое (on-off-реакция) (рис. 14.9).

Диаметр рецептивных полей ганглиозных клеток в центре сет­чатки значительно меньше, чем на периферии. Эти рецептивные поля имеют круглую форму и концентрически построены: круглый возбудительный центр и кольцевая тормозная периферическая зона или наоборот. При увеличении размера светового пятнышка, вспыхивающего в центре рецептивного поля, ответ ганглиозной клетки увеличивается (пространственная суммация).

Одновременное возбуждение близко расположенных ганглиоз­ных клеток приводит к их взаимному торможению: ответы каждой клетки делаются меньше, чем при одиночном раздражении. В ос­нове этого эффекта лежит латеральное, или боковое, торможение. Рецептивные поля соседних ганглиозных клеток частично пере­крываются, так что одни и те же рецепторы могут участвовать в генерации ответов нескольких нейронов. Благодаря круглой фор­ме рецептивные поля ганглиозных клеток сетчатки производят так называемое поточечное описание сетчаточного изображения: оно отображается очень тонкой мозаикой, состоящей из возбуж­денных нейронов.

Электрические явления в подкорковом зрительном центре и зрительной зоны коры. Картина возбуждения в нейронных сло­ях подкоркового зрительного центра - наружного или латераль­ного, коленчатого тела (НКТ), куда приходят волокна зритель­ного нерва, во многом сходна с той, которая наблюдается в сет­чатке. Рецептивные поля этих нейронов также круглые, но мень­шего размера, чем в сетчатке. Ответы нейронов, генерируемые в ответ на вспышку света, здесь короче, чем в сетчатке. На уровне наружных коленчатых тел происходит взаимодействие афферент­ных сигналов, пришедших из сетчатки, с эфферентными сигналами из зрительной области коры, а также через ретикулярную форма­цию от слуховой и других сенсорных систем. Эти взаимодействия обеспечивают выделение наиболее существенных компонентов сен­сорного сигнала и процессы избирательного зрительного внимания.

Импульсные разряды нейронов наружного коленчатого тела по их аксонам поступают в затылочную часть полушарий большого мозга, где расположена первичная проекционная область зритель­ной зоны коры (стриарная кора, или поле 17). Здесь происходит значительно более специализированная и сложная, чем в сетчатке и в наружных коленчатых телах, переработка информации. Нейроны зрительной зоны коры имеют не круглые, а вытянутые (по горизон­тали, вертикали или в одном из косых направлений) рецептивные поля небольшого размера. Благодаря этому они способны выделять из цельного изображения отдельные фрагменты линий с той или иной ориентацией и расположением (детекторы ориентации) и избирательно на них реагировать.

В каждом небольшом участке зрительной зоны коры по ее глу­бине сконцентрированы нейроны с одинаковой ориентацией и локализацией рецептивных полей в поле зрения. Они образуют колонку нейронов, проходящую вертикально через все слои коры. Колонка - пример функционального объединения корковых ней­ронов, осуществляющих сходную функцию. Как показывают ре­зультаты исследований последних лет, функциональное объедине­ние отдаленных друг от друга нейронов зрительной зоны коры может происходить также за счет синхронности их разрядов. Многие ней­роны зрительной зоны коры избирательно реагируют на определен­ные направления движения (дирекциональные детекторы) либо на какой-то цвет, а часть нейронов лучше всего отвечает на относитель­ную удаленность объекта от глаз. Информация о разных при­знаках зрительных объектов (форма, цвет, движение) обраба­тывается параллельно в разных частях зрительной зоны коры большого мозга.

Для оценки передачи сигналов на разных уровнях зрительной системы часто используют регистрацию суммарных вызванных потенциалов (ВП), которые у животных можно одновременно от­водить от всех отделов, а у человека - от зрительной зоны коры с помощью наложенных на кожу головы электродов (рис. 14.10).

Сравнение вызванного световой вспышкой ответа сетчатки (ЭРГ) и ВП коры большого мозга позволяет установить локализа­цию патологического процесса в зрительной системе человека.

Зрительные функции. Световая чувствительность. Абсолютная чувствительность зрения. Для возникновения зритель­ного ощущения необходимо, чтобы световой раздражитель имел некоторую минимальную (пороговую) энергию. Минимальное чис­ло квантов света, необходимое для возникновения ощущения све-

та, в условиях темновой адаптации колеблется от 8 до 47. Рассчи­тано, что одна палочка может быть возбуждена всего 1 квантом света. Таким образом, чувствительность рецепторов сетчатки в наиболее благоприятных условиях световосприятия физически предельна. Одиночные палочки и колбочки сетчатки различаются по световой чувствительности незначительно, однако число фото­рецепторов, посылающих сигналы на одну ганглиозную клетку, в центре и на периферии сетчатки различно. Число колбочек в ре­цептивном поле в центре сетчатки примерно в 100 раз меньше чис­ла палочек в рецептивном поле на периферии сетчатки. Соответ­ственно и чувствительность палочковой системы в 100 раз выше, чем колбочковой.

Зрительная адаптация. При переходе от темноты к свету насту­пает временное ослепление, а затем чувствительность глаза посте­пенно снижается. Это приспособление зрительной сенсорной сис­темы к условиям яркой освещенности называется световой адапта­ цией. Обратное явление (темновая адаптация) наблюдается при переходе из светлого помещения в почти не освещенное. В первое время человек почти ничего не видит из-за пониженной возбуди­мости фоторецепторов и зрительных нейронов. Постепенно начи­нают выявляться контуры предметов, а затем различаются и их детали, так как чувствительность фоторецепторов и зрительных нейронов в темноте постепенно повышается.

Повышение световой чувствительности во время пребывания в темноте происходит неравномерно: в первые 10 мин она увели­чивается в десятки раз, а затем в течение часа - в десятки тысяч раз. Важную роль в этом процессе играет восстановление зри­тельных пигментов. Пигменты колбочек в темноте восстанавли­ваются быстрее родопсина палочек, поэтому в первые минуты пре­бывания в темноте адаптация обусловлена процессами в колбоч­ках. Этот первый период адаптации не приводит к большим изме­нениям чувствительности глаза, так как абсолютная чувствитель­ность колбочкового аппарата невелика.

Следующий период адаптации обусловлен восстановлением родопсина палочек. Этот период завершается только к концу пер­вого часа пребывания в темноте. Восстановление родопсина со­провождается резким (в 100 000-200 000 раз) повышением чув­ствительности палочек к свету. В связи с максимальной чувстви­тельностью в темноте только палочек слабо освещенный предмет виден лишь периферическим зрением.

Существенную роль в адаптации, помимо зрительных пигмен­тов, играет изменение (переключение) связей между элементами сетчатки. В темноте площадь возбудительного центра рецептив­ного поля ганглиозной клетки увеличивается вследствие ослаб­ления или снятия горизонтального торможения. При этом увели­чивается конвергенция фоторецепторов на биполярные нейроны и биполярных нейронов на ганглиозную клетку. Вследствие этого за счет пространственной суммации на периферии сетчатки свето­вая чувствительность в темноте возрастает.

Световая чувствительность глаза зависит и от влияний ЦНС. Раздражение некоторых участков ретикулярной формации ствола мозга повышает частоту импульсов в волокнах зрительного нерва. Влияние ЦНС на адаптацию сетчатки к свету проявляется и в том, что освещение одного глаза понижает световую чувствительность неосвещенного глаза. На чувствительность к свету оказывают влияние также звуковые, обонятельные и вкусовые сигналы.

Дифференциальная зрительная чувствительность. Если на осве­щенную поверхность, яркость которой I, подать добавочное осве­щение (dl ), то, согласно закон