Врожденный и приобретенный иммунитет иммунология. Что такое иммунитет? Врожденный иммунитет, факторы врожденного иммунитета. Что такое врожденный иммунитет

Зависит абсолютно все в жизни человека. Природа позаботилась о нем и преподнесла два ценнейших подарка — врожденный и приобретенный иммунитет.

Что такое

Когда ребенок рождается, у него уже есть сформированная система иммунитета, которая дана в наследство от мамы и папы, и в последующем она продолжает развиваться.

Это способность развивать воспаление, то есть возможность организма ответить на инфекцию, а не просто ее недопущение.

Хороший пример заноза в пальце — организм отвечает покраснением, воспалением, отеком, пытаясь изгнать инородный предмет. Также происходит и с ответом организма на всевозможные микробы — боль, температура, слабость, отсутствие аппетита.

Если ребенок часто болеет (по мнению родителей) это еще не значит, что у него плохой врожденный иммунитет. Наоборот, таким образом он тренирует способность организма, который встречается с микробами и патогенами, защищаться. Если ребенок идет в 2-3 года в детский садик и начинает болеть, то не стоит бить тревогу — это тоже происходит тренировка «защитников» организма.

Врожденный иммунитет остается таким, каким он был дан при рождении, независимо от того, как часто он сталкивается с патогенными микроорганизмами, а вот приобретенный напротив — от таких столкновений только укрепляется.

Когда формируется

Первые клетки появляются уже на 4 неделе беременности. Принципиально важными месяцами беременности считаются восьмой и девятый. Именно в этот период иммунитет завершает свое внутриутробное развитие. Поэтому если ребенок недоношенный, то у него будет повышена склонность к развитию инфекций. По сути, до 8-го месяца формируются первые 50% врожденного иммунитета, а 8 и 9 месяцы — это следующие 50%.

Во время беременности мать — главный защитник малыша, в ее утробе созданы благоприятные стерильные условия для ребенка. Плацента выполняет роль фильтра, и доставляет плоду только питательные вещества и кислород. При этом антитела матери через ту же плаценту переходят в кровь ребенку, и остаются там на период от 6 до 12 месяцев (этим как раз и объясняется почему после годика дети болеют чаще).

Во время родов ребенок сталкивается уже с абсолютно нестерильным внешним миром, и вот тут его иммунитет начинает работать.

Для того чтобы иммунитет ребенка был полноценным, будущая мать должна соблюдать:

  • полноценный сон;
  • полноценное питание;
  • принимать препараты железа.

Потребление железа в этот период возрастает минимум в три раза, и железо напрямую связано с формированием защитных функций организма. Беременная женщина должна проследить за уровнем железа, так как низкий уровень отразится и на ее плохом самочувствии, и на здоровье ребенка.

А после рождения обязательным является естественное (грудное) вскармливание ребенка.

Клетки

Клеточный «коктейль» иммунитета включает в себя:

  • мононуклеарные фагоциты (моноциты, тканевые макрофаги);
  • гранулоциты;
  • нейтрофилы;
  • эозинофилы;
  • базофилы (периферической крови и тканевые или тучные клетки);
  • киллерные клетки-естественные (ЕК-клетки);
  • просто киллеры (K-клетки);
  • лимфоинактивированные киллерные клетки (ЛАК-клетки).

Для простого обывателя разобраться в этих названиях сложно, но если отступить от научного объяснения, то основное тут то, что каждый тип клетки выполняет свою роль в борьбе, вместе образуя единый механизм защиты индивидуума.

Свойства врожденного иммунитета и как стимулировать его клетки

К свойствам можно отнести следующие моменты:

  • Высокая скорость реакции — система в очень короткий промежуток времени распознает чужака, попавшего в организм, и начинает действовать на его удаление всеми возможными способами.
  • Существование заведомо в организме (а не формируется в ответ на появление «чужака» как в случае с приобретенным).
  • Участие в фагоцитозе.
  • Передача наследственным путем.
  • Отсутствие памяти (то есть естественный иммунитет не запоминает микробы и бактерии, с которыми уже имел дело, эта роль отводится приобретенному иммунитету).

Факторы

Свойства врожденного иммунитета поддерживаются его факторами, к которым относятся механические преграды — наша кожа, лимфатические узлы, слизистые оболочки, секреция, слюноотделение, мокрота и прочие «помощники» истребления микробов из организма. В этом также помогают такие физиологические функции, как кашель, чихание, рвота, диарея, повышение температуры.

Если рассматривать на примере кожи, то доказано, что она обладает высокой степенью самоочистки. Так если нанести на кожу нетипичные бактерии, то спустя какое-то время они исчезнут.

Слизистые оболочки проигрывают коже в степени защищенности, поэтому зачастую инфекции начинают распространяться именно со слизистых оболочек.

Помимо перечисленного в организме начинаются также химические реакции, направленные на защиту организма и устранение чужеродных объектов.

Что такое иммунодефицит ребенка, и как определить его наличие

Как уже было описано выше, во внутриутробном развитии от матери к ребенку передаются антитела, которые защищают его в последующем. К сожалению, случается так, что естественный процесс передачи антител может быть прерван или выполнен не в полной мере, это может привести к иммунодефициту, то есть к нарушенному иммунитету.

Что может повлиять на становление врожденного иммунитета:

Иммунодефицитные состояния встречаются по статистике не так часто, гораздо больше о них говорится. Многие родители не готовы к тому, что ребенок будет болеть простудными заболеваниями, и напрасно пытаются выискивать у него «плохой иммунитет».

Между тем международные критерии озвучивают, сколько должен болеть ребенок с нормальным иммунитетом: до 10 раз в год ОРЗ. Это считается нормой. Особенно если ребенок ходит в детский сад или в школу, и так выражать свое взаимоотношение с микроорганизмами, то есть воспалениями и прочими проявлениями ОРЗ, это абсолютная норма.

Сегодня иммунодефицитные состояния успешно лечатся. Детям назначают то, что у них отсутствуют. Самые частые иммунодефициты — это нарушения антител и соответственно назначается заместительная терапия иммуноглобулинами, что позволит жить без инфекций и вести привычный образ жизни.

Повышение защитных свойств

Повысить врожденный иммунитет уже появившегося на свет человека никак не получится, это роль матери во время беременности. Именно она закладывает, каким будет иммунитет, и повысить его она может только правильно питаясь, отдыхая, соблюдая активный режим, принимая витамины и не допуская всякого рода инфекций.

После рождения ребенка правильно говорить об укреплении иммунной системы в целом.

Начинать ее укреплять в принципе никогда не поздно, но, конечно же, лучше приучить ко всем этим процедурам ребенка с малых лет:

  • Физическая активность.
  • Сбалансированное правильное питание (в рационе обязательно должны присутствовать мясо и рыба, овощи и фрукты, кисломолочные продукты, орехи, крупы и бобовые).
  • Благоприятный режим температуры (обеспечивается за счет одежды в соответствии с погодными условиями, не стоит слишком тепло одеваться) и влажности (для определения влажности можно приобрести копеечный гигрометр, если уровень влажности недостаточно высок, такое часто наблюдается в отопительный период, то нужно задуматься о покупке увлажнителя).
  • Закаливание (обливание, контрастный душ).

Также хочется отметить, что такие вредные привычки, как курение и алкоголь, а также стресс и постоянное недосыпание весьма пагубно сказываются на иммунитете.

Стимуляторы клеток

Всемирная Организация Здравоохранения (ВОЗ) непрестанно проводит исследования для выявления причин увеличения инфекционных и онкологических заболеваний. Основная причина, как выяснилось, это дефицит клеток-киллеров.

Учеными были разработаны тем не менее специальные препараты, направленные на стимуляцию активности K-клеток:

  • иммуномодуляторы;
  • общеукрепляющие вещества;
  • ТБ — трансферфакторные белки.

В качестве иммуностимуляторов очень часто применяются лекарственные препараты растительного происхождения (эхинацея, настойка лимонника).

Трансферфакторные белки — это передовые стимуляторы клеток хоть и открыты они были в 1948 году, но распространение получили только недавно, так как на тот момент добыть их получалось только из человеческой крови. Сейчас же производители фармопрепаратов и биологически активных добавок получают их из молозива коров, коз и яичного желтка. Китайские производители ТБ научились добывать трансферные белки из клеток грибов и горных муравьев.

Трансферные белки планируется получать из икры лососевых рыб, сейчас ведутся разработки отечественных производителей.

Иммунитет хоть и сложная система организма, но каждый человек в состоянии ею управлять. Изменив вектор образа жизни в положительную сторону, можно добиться значительных результатов, которые скажутся не только на здоровье и хорошем самочувствии в целом, но и на остальных аспектах жизнедеятельности.

МЕХАНИЗМЫ ВРОЖДЁННОГО ИММУНИТЕТА

Врождённый иммунитет - наиболее ранний защитный механизм как в эволюционном плане (он существует практически у всех многоклеточных), так и по времени ответа, развивающегося в первые часы и дни после проникновения чужеродного материала во внутреннюю среду, т.е. задолго до развития адаптивной иммунной реакции. Значительную часть патогенов инактивируют именно врождённые механизмы иммунитета, не доводя процесс до развития иммунного ответа с участием лимфоцитов. И только если механизмы врождённого иммунитета не справляются с проникающими в организм патогенами, в «игру» включаются лимфоциты. При этом адаптивный иммунный ответ невозможен без вовлечения механизмов врождённого иммунитета. Кроме того, врождённый иммунитет играет главную роль в удалении апоптотических и некротических клеток и реконструировании повреждённых органов. В механизмах врождённой защиты организма важнейшую роль играют первичные рецепторы для патогенов, система комплемента, фагоцитоз, эндогенные пептиды-антибиотики и факторы защиты от вирусов - интерфероны. Функции врождённого иммунитета схематично представлены на рис. 3-1.

РЕЦЕПТОРЫ РАСПОЗНАВАНИЯ «ЧУЖОГО»

На поверхности микроорганизмов присутствуют повторяющиеся молекулярные углеводные и липидные структуры, которые в подавляющем большинстве случаев отсутствуют на клетках организма хозяина. Особые рецепторы, распознающие этот «узор» на поверхности патогена, - PRR (Pattern Recognition Receptors –РRP-рецептор) - позволяют клеткам врождённого иммунитета обнаруживать микробные клетки. В зависимости от локализации выделяют растворимые и мембранные формы PRR.

Циркулирующие (растворимые) рецепторы для патогенов - белки сыворотки крови, синтезируемые печенью: липополисахаридсвязывающий белок (LBP - Lipopolysaccharide Binding Protein), компонент системы комплемента C1q и белки острой фазы MBL и С-реактивный белок (СРБ). Они непосредственно связывают микробные продукты в жидких средах организма и обеспечивают возможность их поглощения фагоцитами, т.е. являются опсонинами. Кроме того, некоторые из них активируют систему комплемента.

Рис. 3-1. Функции врождённого иммунитета. Обозначения: PAMP (PathogenAssociated Molecular Patterns) - молекулярные структуры микроорганизмов, HSP (Heat Shock Proteins) - белки теплового шока, TLR (Toll-Like Receptors), NLR (NOD-Like Receptors), RLR (RIG-Like Receptors) - клеточные рецепторы

- СРБ, связывая фосфорилхолин клеточных стенок ряда бактерий и одноклеточных грибов, опсонизирует их и активирует систему комплемента по классическому пути.

- MBL принадлежит к семейству коллектинов. Имея сродство к остаткам маннозы, экспонированным на поверхности многих микробных клеток, MBL запускает лектиновый путь активации комплемента.

- Белки сурфактанта лёгких - SP-A и SP-D принадлежат к тому же молекулярному семейству коллектинов, что и MBL. Они, вероятно, имеют значение в опсонизации (связывании антител с клеточной стенкой микроорганизма) лёгочного патогена - одноклеточного грибка Pneumocystis carinii.

Мембранные рецепторы. Эти рецепторы расположены как на наружных, так и на внутренних мембранных структурах клеток.

- TLR (Toll-Like Receptor - Toll-подобный рецептор; т.е. сходный с Toll-рецептором дрозофилы). Одни из них непосредственно связывают продукты патогенов (рецепторы для маннозы макрофагов, TLR дендритных и других клеток), другие работают совместно с иными рецепторами: например, CD14 молекула на макрофагах связывает комплексы бактериального липополисахарида (ЛПС) с LBP, а TLR-4 вступает во взаимодействие с CD14 и передаёт соответствующий сигнал внутрь клетки. Всего у млекопитающих описано 13 различных вариантов TLR (у человека пока только 10).

Цитоплазматические рецепторы:

- NOD-рецепторы (NOD1 и NOD2) находятся в цитозоле и состоят из трёх доменов: N-концевого CARD-домена, центрального NOD-домена (NOD - Nucleotide Oligomerization Domain - домен олигомеризации нуклеотидов) и C-концевого LRR-домена. Различие между этими рецепторами заключается в количестве CARD-доменов. Рецепторы NOD1 и NOD2 распознают мурамилпептиды - вещества, образующиеся после ферментативного гидролиза пептидогликана, входящего в состав клеточной стенки всех бактерий. NOD1 распознаёт мурамилпептиды с концевой мезодиаминопимелиновой кислотой (meso-DAP), которые образуются только из пептидогликана грамотрицательных бактерий. NOD2 распознаёт мурамилдипептиды (мурамилдипептид и гликозилированный мурамилдипептид) с концевым D-изоглутамином или D-глутаминовой кислотой, являющиеся результатом гидролиза пептидогликана как грамположительных, так и грамотрицательных бактерий. Кроме того, NOD2 имеет сродство к мурамилпептидам с концевым L-лизином, которые есть только у грамположительных бактерий.

- RIG- подобные рецепторы (RLR, RIG-Like Receptors): RIG-I (Retinoic acid-Inducible Gene I ), MDA5 (Melanoma Differentiation-associated Antigen 5) и LGP2 (Laboratory of Genetics and Physiology 2).

Все три рецептора, кодируемые этими генами, имеют сходную химическую структуру и локализуются в цитозоле. Рецепторы RIG-I и MDA5 распознают вирусную РНК. Роль белка LGP2 пока неясна; возможно, он выполняет роль хеликазы, связываясь с двуцепочечной вирусной РНК, модифицирует её, что облегчает последующее распознавание с помощью RIG-I. RIG-I распознаёт односпиральную РНК с 5-трифосфатом, а также относительно короткие (<2000 пар оснований) двуспиральные РНК. MDA5 различает длинные (>2000 пар оснований) двуспиральные РНК. Таких структур в цитоплазме эукариотической клетки нет. Вклад RIG-I и MDA5 в распознавание конкретных вирусов зависит от того, образуют ли данные микроорганизмы соответствующие формы РНК.

ПРОВЕДЕНИЕ СИГНАЛОВ С TOLL-ПОДОБНЫХ РЕЦЕПТОРОВ

Все TLR используют одинаковую принципиальную схему передачи активационного сигнала в ядро (рис. 3-2). После связывания с лигандом рецептор привлекает один или несколько адапторов (MyD88, TIRAP, TRAM, TRIF), которые обеспечивают передачу сигнала с рецептора на каскад серин-треониновых киназ. Последние вызывают активацию факторов транскрипции NF-kB (Nuclear Factor of к-chain B-lymphocytes), AP-1 (Activator Protein 1), IRF3, IRF5 и IRF7(Interferon Regulatory Factor), которые транслоцируются в ядро и индуцируют экспрессию геновмишеней.

Все адапторы содержат TIR-домен и связываются с TIR-доменами TOLL-подобных рецепторов (Toll/Interleukin-1 Receptor, так же как рецептора для ИЛ-1) путём гомофильного взаимодействия. Все известные TOLL-подобные рецепторы, за исключением TLR3, передают сигнал через адаптор MyD88 (MyD88-зависимый путь). Связывание MyD88 с TLR1/2/6 и TLR4 происходит при помощи дополнительного адаптора TIRAP, который не требуется в случае TLR5, TLR7 и TLR9. В передаче сигнала с TLR3 адаптор MyD88 не участвует; вместо него используется TRIF (MyD88-независимый путь). TLR4 использует как MyD88зависимый, так и MyD88-независимый пути передачи сигнала. Однако связывание TLR4 с TRIF происходит при помощи дополнительного адаптора TRAM.

Рис. 3-2. Пути передачи сигналов с Toll-подобных рецепторов (TLR). Указанные на рисунке TLR3, TLR7, TLR9 - внутриклеточные эндосомальные рецепторы; TLR4 и TLR5 - мономерные рецепторы, встроенные в цитоплазматическую мембрану. Трансмембранные димеры: TLR2 с TLR1 или TLR2 с TLR6. Тип распознаваемого димерами лиганда зависит от их состава

MyD88-зависимый путь. Адаптор MyD88 состоит из N-концевого DD-домена (Death Domain - домен смерти) и С-концевого TIRдомена, связанного с рецептором с помощью гомофильного TIR- TIR взаимодействия. MyD88 привлекает киназы IRAK-4 (Interleukin-1 Receptor-Associated Kinase-4) и IRAK-1 через взаимодействие с их аналогичными DD-доменами. Это сопровождается их последовательным фосфорилированием и активацией. После этого IRAK-4 и IRAK-1 отделяются от рецептора и связываются с адаптером TRAF6, который, в свою очередь, привлекает киназу TAK1 и убиквитин-лигазный комплекс (на рис. 3-2 не показан), что приводит к активации TAK1. TAK1 активирует две группы мишеней:

IκB-киназу (IKK), состоящую из субъединиц IKKα, IKKβ и IKKγ. В результате фактор транскрипции NF-kB освобождается от ингибирующего его белка IκB и транслоцируется в клеточное ядро;

Каскад митоген-активируемых протеинкиназ (MAP-киназ), способствующий активации факторов транскрипции группы AP-1. Состав AP-1 варьирует и зависит от типа активирующего сигнала. Основные его формы - гомодимеры c-Jun или гетеродимеры c-Jun и c-Fos.

Результатом активации обоих каскадов является индукция экспрессии антимикробных факторов и медиаторов воспаления, в том числе фактора некроза опухолей альфа ФНОа (TNFa), который, воздействуя на клетки аутокринно, вызывает экспрессию дополнительных генов. Кроме того, AP-1 инициирует транскрипцию генов, ответственных за пролиферацию, дифференцировку и регуляцию апоптоза.

MyD88-независимый путь. Передача сигнала происходит через адаптер TRIF или TRIF:TRAM и приводит к активации киназы TBK1, которая, в свою очередь, активирует фактор транскрипции IRF3. Последний индуцирует экспрессию интерферонов I типа, которые, как и ФНОа в MyDSS-зависимом пути, воздействуют на клетки аутокринно и активируют экспрессию дополнительных генов (interferon response genes). Активация различных сигнальных путей при стимуляции TLR, вероятно, обеспечивает направленность врождённой иммунной системы на борьбу с тем или иным типом инфекции.

Сравнительная характеристика врождённых и адаптивных механизмов резистентности приведена в табл. 3-1.

Существуют субпопуляции лимфоцитов со свойствами, «промежуточными» между таковыми неклонотипных механизмов врождённого иммунитета и клонотипных лимфоцитов с большим разнообразием рецепторов для антигенов. Они не пролиферируют после связывания антигена (т.е. экспансии клонов не происходит), но в них сразу индуцируется продукция эффекторных молекул. Ответ не слишком специфичен и наступает быстрее, чем «истинно лимфоцитарный», иммунная память не формируется. К таким лимфоцитам можно отнести:

Внутриэпителиальные γδT-лимфоциты с перестроенными генами, кодирующими TCR ограниченного разнообразия, связывают лиганды типа белков теплового шока, нетипичные нуклеотиды, фосфолипиды, MHC-IB;

B1-лимфоциты брюшной и плевральной полостей имеют перестроенные гены, кодирующие BCR ограниченного разнообразия, которые обладают широкой перекрёстной реактивностью с бактериальными антигенами.

ЕСТЕСТВЕННЫЕ КИЛЛЕРЫ

Особая субпопуляция лимфоцитов - естественные киллеры (NKклетки, натуральные киллеры). Они дифференцируются из общей лимфоидной клетки-предшественника и in vitro способны спонтанно, т.е. без предварительной иммунизации, убивать некоторые опухолевые, а также инфицированные вирусами клетки. NK-клетки являются большими гранулярными лимфоцитами, не экспрессирующими линейных маркёров Т- и В-клеток (CD3, CD19). В циркулирующей крови нормальные киллеры составляют около 15% всех мононуклеарных клеток, а в тканях локализованы в печени (большинство), красной пульпе селезёнки, слизистых оболочках (особенно репродуктивных органов).

Большинство NK-клеток содержит в цитоплазме азурофильные гранулы, где депонированы цитотоксические белки перфорин, гранзимы и гранулизин.

Главными функциями NK-клеток являются распознавание и элиминация клеток, инфицированных микроорганизмами, изменённых в результате злокачественного роста, либо опсонизированных IgGантителами, а также синтез цитокинов ИФНу, ФНОа, GM-CSF, ИЛ-8, ИЛ-5. In vitro при культивировании с ИЛ-2 NK-клетки приобретают высокий уровень цитолитической активности по отношению к широкому спектру мишеней, превращаясь в так называемые LAK-клетки.

Общая характеристика NK-клеток представлена на рис. 3-3. Главные маркёры NK-клеток - молекулы CD56 и CD16 (FcγRIII). CD16 является рецептором для Fc-фрагмента IgG. На NK-клетках имеются рецепторы для ИЛ-15 - ростового фактора NK-клеток, а также для ИЛ-21 - цитокина, усиливающего их активацию и цитолитическую активность. Важную роль играют молекулы адгезии, обеспечивающие контакт с другими клетками и межклеточным матриксом: VLA-5 способствует прилипанию к фибронектину; CD11a/CD18 и CD11b/CD18 обеспечивают присоединение к молекулам эндотелия ICAM-1 и ICAM-2 соответственно; VLA-4 - к молекуле эндотелия VCAM-I; CD31, молекула гомофильного взаимодействия, ответственна за диапедез (выхождение через сосудистую стенку в окружающую ткань) NK-клеток через эпителий; CD2, рецептор для эритроцитов барана, является молекулой адгезии, которая

Рис. 3-3. Общая характеристика NK-клеток. IL15R и IL21R - рецепторы для ИЛ-15 и ИЛ-21 соответственно

взаимодействует с LFA-3 (CD58) и инициирует взаимодействие NKклеток с другими лимфоцитами. Помимо CD2, на NK-клетках человека выявляются и некоторые другие маркёры Т-лимфоцитов, в частности CD7 и гомодимер CD8a, но не CD3 и TCR, что отличает их от NKTлимфоцитов.

По эффекторным функциям NK-клетки близки к T-лимфоцитам: они проявляют цитотоксическую активность в отношении клетокмишеней по тому же перфорин-гранзимовому механизму, что и ЦТЛ (см. рис. 1-4 и рис. 6-4), и продуцируют цитокины - ИФНγ, ФНО, GM-CSF, ИЛ-5, ИЛ-8.

Отличие естественных киллеров от T-лимфоцитов состоит в том, что у них отсутствует TCR и они распознают комплекс антиген-

MHC иным (не вполне ясным) способом. NK не формируют клетки иммунной памяти.

На NK-клетках человека есть рецепторы, относящиеся к семейству KIR (Killer-cell Immunoglobulin-like Receptors), способные связывать молекулы MHC-I собственных клеток. Однако эти рецепторы не активируют, а ингибируют киллерную функцию нормальных киллеров. Кроме того, на NK-клетках есть такие иммунорецепторы, как FcyR, и экспрессирована молекула CD8, имеющая сродство к

На уровне ДНК гены KIR не перестраиваются, но на уровне первичного транскрипта происходит альтернативный сплайсинг, что обеспечивает определённое разнообразие вариантов этих рецепторов у каждой отдельной NK-клетки. На каждом нормальном киллере экспрессировано более одного варианта KIR.

H.G. Ljunggren и K. Karre в 1990 г. сформулировали гипотезу «missing self» («отсутствие своего»), согласно которой NK-клетки распознают и убивают клетки своего организма с пониженной или нарушенной экспрессией молекул MHC-I. Поскольку субнормальная экспрессия MHC-I возникает в клетках при патологических процессах, например при вирусной инфекции, опухолевом перерождении, NK-клетки способны убивать инфицированные вирусами или перерождённые клетки собственного организма. Гипотеза «missing self» схематично представлена на рис. 3-4.

СИСТЕМА КОМПЛЕМЕНТА

Комплемент - система сывороточных белков и нескольких белков клеточных мембран, выполняющих 3 важные функции: опсонизацию микроорганизмов для дальнейшего их фагоцитоза, инициацию сосудистых реакций воспаления и перфорацию мембран бактериальных и других клеток. Компоненты комплемента (табл. 3-2, 3-3) обозначают буквами латинского алфавита C, B и D с добавлением арабской цифры (номер компонента) и дополнительных строчных букв. Компоненты классического пути обозначают латинской буквой «С» и арабскими цифрами (C1, C2 ... C9), для субкомпонентов комплемента и продуктов расщепления к соответствующему обозначению добавляют строчные латинские буквы (C1q, C3b и т.д.). Активированные компоненты выделяют чертой над литерой, инактивированные компоненты - буквой «i» (например, iC3b).

Рис. 3-4. Гипотеза «missing self» (отсутствие своего). На рисунке представлены три типа взаимодействия NK-клеток с мишенями. На NK-клетках имеется два типа распознающих рецепторов: активационные и ингибиторные. Ингибиторные рецепторы различают молекулы MHC-I и угнетают сигнал от активационных рецепторов, которые, в свою очередь, определяют либо молекулы MHC-I (но с меньшей аффинностью, чем ингибиторные рецепторы), либо MHC-подобные молекулы: а - клетка-мишень не экспрессирует активационных лигандов, и лизиса не происходит; б - клетка-мишень экспрессирует активационные лиганды, но не экспрессирует MHC-I. Такая клетка подвергается лизису; в - клеткамишень содержит как молекулы MHC-I, так и активационные лиганды. Исход взаимодействия зависит от баланса сигналов, идущих от активационных и ингибиторных рецепторов NK-клеток

Активация комплемента (рис. 3-5). В норме, когда внутренняя среда организма «стерильна» и патологического распада собственных тканей не происходит, уровень активности системы комплемента невысок. При появлении во внутренней среде микробных продуктов происходит активация системы комплемента. Она может происходить по трём путям: альтернативному, классическому и лектиновому.

- Альтернативный путь активации. Его инициируют непосредственно поверхностные молекулы клеток микроорганизмов [факторы альтернативного пути имеют буквенное обозначение: P (пропердин), B и D].

Рис. 3-5. Активация системы комплемента и образование мембраноатакующего комплекса. Пояснения см. в тексте, а также в табл. 3-2, 3-3. Активированные компоненты, согласно международному соглашению, надчёркнуты

◊ Из всех белков системы комплемента в сыворотке крови больше всего C3 - его концентрация в норме составляет 1,2 мг/мл. При этом всегда имеется небольшой, но значимый уровень спонтанного расщепления C3 с образованием C3a и C3b. Компонент C3b - опсонин, т.е. он способен ковалентно связываться как с поверхностными молекулами микроорганизмов, так и с рецепторами на фагоцитах. Кроме того, «осев» на поверхности клеток, C3b связывает фактор В. Тот, в свою очередь, становится субстратом для сывороточной сериновой протеазы - фактора D, который расщепляет его на фрагменты Ва и Bb. C3b и Bb образуют на поверхности микроорганизма активный комплекс, стабилизируемый пропердином (фактор Р).

◊ Комплекс C3b/Bb служит С3-конвертазой и значительно повышает уровень расщепления С3 по сравнению со спонтанным. Кроме того, после связывания с C3 он расщепляет C5 до фрагментов C5a и C5b. Малые фрагменты C5a (наиболее сильный) и C3a - анафилатоксины комплемента, т.е. медиаторы воспалительной реакции. Они создают условия для миграции фагоцитов в очаг воспаления, вызывают дегрануляцию тучных клеток, сокращение гладких мышц. C5a также вызывает повышение экспрессии на фагоцитах CR1 и CR3.

◊ С C5b начинается формирование «мембраноатакующего комплекса», вызывающего перфорацию мембраны клеток микроорганизмов и их лизис. Сначала образуется комплекс C5b/C6/ C7, встраивающийся в мембрану клетки. Одна из субъединиц компонента C8 - C8b - присоединяется к комплексу и катализирует полимеризацию 10-16 молекул C9. Этот полимер и формирует неспадающуюся пору в мембране, имеющую диаметр около 10 нм. В результате клетки становятся неспособными поддерживать осмотический баланс и лизируются.

- Классический и лектиновый пути сходны друг с другом и отличаются от альтернативного способом активации C3. Главной C3конвертазой классического и лектинового пути служит комплекс C4b/C2a, в котором протеазной активностью обладает C2a, а C4b ковалентно связывается с поверхностью клеток микроорганизмов. Примечательно, что белок C2 гомологичен фактору В, даже их гены расположены рядом в локусе MHC-III.

◊ При активации по лектиновому пути один из белков острой фазы - MBL - взаимодействует с маннозой на поверхности клеток микроорганизмов, а MBL-ассоциированная сериновая протеаза (MASP - Mannose-bindingprotein-Associated Serine Protease) катализирует активационное расщепление C4 и C2.

◊ Сериновой протеазой классического пути служит C1s, одна из субъединиц комплекса C1qr 2 s 2 . Она активируется, когда по крайней мере 2 субъединицы C1q связываются с комплексом антиген-антитело. Таким образом, классический путь активации комплемента связывает врождённый и адаптивный иммунитет.

Рецепторы компонентов комплемента. Известно 5 типов рецепторов для компонентов комплемента (CR - Complement Receptor) на различных клетках организма.

CR1 экспрессирован на макрофагах, нейтрофилах и эритроцитах. Он связывает C3b и C4b и при наличии других стимулов к фагоцитозу (связывания комплексов антиген-антитело через FcyR или при воздействии ИФНу - продукта активированных T-лимфоцитов) оказывает пермиссивное действие на фагоциты. CR1 эритроцитов через C4b и C3b связывает растворимые иммунные комплексы и доставляет их к макрофагам селезёнки и печени, обеспечивая тем самым клиренс крови от иммунных комплексов. При нарушении этого механизма иммунные комплексы выпадают в осадок - прежде всего в базальных мембранах сосудов клубочков почек (CR1 есть и на подоцитах клубочков почек), приводя к развитию гломерулонефрита.

CR2 B-лимфоцитов связывает продукты деградации C3 - C3d и iC3b. Это в 10 000-100 000 раз увеличивает восприимчивость B-лимфоцита к своему антигену. Эту же мембранную молекулу - CR2 - использует в качестве своего рецептора вирус Эпштейна-Барр - возбудитель инфекционного мононуклеоза.

CR3 и CR4 также связывают iC3b, который, как и активная форма C3b, служит опсонином. В случае если CR3 уже связался с растворимыми полисахаридами типа бета-глюканов, связывания iC3b с CR3 самого по себе достаточно для стимуляции фагоцитоза.

C5aR состоит из семи доменов, пенетрирующих мембрану клетки. Такая структура характерна для рецепторов, связанных с G-белками (белки, способные связывать гуаниновые нуклеотиды, в том числе ГТФ).

Защита собственных клеток. Собственные клетки организма защищены от деструктивных воздействий активного комплемента благодаря так называемым регуляторным белкам системы комплемента.

C1-ингибитор (C1inh) разрушает связь C1q с C1r2s2, тем самым ограничивая время, в течение которого C1s катализирует активационное расщепление C4 и C2. Кроме того, C1inh ограничивает спонтанную активацию C1 в плазме крови. При генетическом дефекте dinh развивается наследственный ангионевротический отёк. Его патогенез состоит в хронически повышенной спонтанной активации системы комплемента и избыточном накоплении анафилактинов (C3a и С5а), вызывающих отёки. Заболевание лечат заместительной терапией препаратом dinh.

- C4-связывающий белок - C4BP (C4-Binding Protein) связывает C4b, предотвращая взаимодействие C4b и С2а.

- DAF (Decay-Accelerating Factor - фактор, ускоряющий деградацию, CD55) ингибирует конвертазы классического и альтернативного путей активации комплемента, блокируя формирование мембраноатакующего комплекса.

- Фактор H (растворимый) вытесняет фактор В из комплекса с C3b.

- Фактор I (сывороточная протеаза) расщепляет C3b на C3dg и iC3b, а C4b - на C4c и C4d.

- Мембранный кофакторный белок MCP (Membrane Cofactor Protein, CD46) связывает C3b и C4b, делая их доступными для фактора I.

- Протектин (CD59). Связывается с C5b678 и предотвращает последующее связывание и полимеризацию С9, блокируя тем самым образование мембраноатакующего комплекса. При наследственном дефекте протектина или DAF развивается пароксизмальная ночная гемоглобинурия. У таких больных эпизодически возникают приступы внутрисосудистого лизиса собственных эритроцитов активированным комплементом и происходит экскреция гемоглобина почками.

ФАГОЦИТОЗ

Фагоцитоз - особый процесс поглощения клеткой крупных макромолекулярных комплексов или корпускулярных структур.«Профессиональные» фагоциты у млекопитающих - два типа дифференцированных клеток - нейтрофилы и макрофаги, которые созревают в костном мозге из СКК и имеют общую промежуточную клетку-предшественник. Сам термин «фагоцитоз» принадлежит И.И. Мечникову, который описал клетки, участвующие в фагоцитозе (нейтрофилы и макрофаги), и основные стадии фагоцитарного процесса: хемотаксис, поглощение, переваривание.

Нейтрофилы составляют значительную часть лейкоцитов периферической крови - 60-70%, или 2,5-7,5х10 9 клеток в 1 л крови. Нейтрофилы формируются в костном мозге, являясь основным продуктом миелоидного кроветворения. Они покидают костный мозг на предпоследней стадии развития - палочкоядерной форме, или на последней - сегментоядерной. Зрелый нейтрофил циркулирует 8-10 ч и поступает в ткани. Общая продолжительность жизни нейтрофила -

2-3 сут. В норме нейтрофилы не выходят из сосудов в периферические ткани, но они первыми мигрируют (т.е. подвергаются экстравазации) в очаг воспаления за счёт быстрой экспрессии молекул адгезии - VLA-4 (лиганд на эндотелии - VCAM-1) и интегрина CD11b/CD18 (лиганд на эндотелии - ICAM-1). На их наружной мембране выявлены эксклюзивные маркёры - CD66а и CD66d (раково-эмбриональные антигены). На рисунке 3-6 представлено участие нейтрофилов в фагоцитозе (миграция, поглощение, дегрануляция, внутриклеточный киллинг, деградация, экзоцитоз и апоптоз) и основные процессы, происходящие в этих клетках при активации (хемокинами, цитокинами и микробными веществами, в частности РАМР) - дегрануляция, образование активных форм кислорода и синтез цитокинов и хемокинов. Апоптоз нейрофилов и их фагоцитоз макрофагами можно рассматривать как важную составную часть воспалительного процесса, так как своевременное их удаление препятствует деструктивному действию их ферментов и различных молекул на окружающие клетки и ткани.

Рис. 3-6. Основные процессы, происходящие в нейтрофилах (НФ) при их активации и фагоцитозе

Моноциты и макрофаги. Моноциты являются «промежуточной формой», в крови их 5-10% от общего числа лейкоцитов. Их назначение - стать оседлыми макрофагами в тканях (рис. 3-7). Макрофаги локализуются в определённых участках лимфоидной ткани: медуллярных тяжах лимфатических узлов, красной и белой пульпы селезёнки. Клетки, производные моноцитов, присутствуют практически во всех нелимфоидных органах: клетки Купфера в печени, микроглия нервной системы, альвеолярные макрофаги, клетки Лангерганса кожи, остеокласты, макрофаги слизистых оболочек и серозных полостей, интерстициальной ткани сердца, поджелудочной железы, мезангиальные клетки почек (на рисунке не показаны). Макрофаги способствуют поддержанию гомеостаза, очищая организм от стареющих и апоптотических клеток, восстанавливая ткани после инфекции и травмы. Макрофаги

Рис. 3-7. Гетерогенность клеток, происходящих от моноцитов. Тканевые макрофаги (МФ) и дендритные клетки (ДК) происходят от моноцитов (МН) периферической крови

слизистых оболочек играют ведущую роль в защите организма. Для реализации этой функции они имеют набор распознающих рецепторов, кислородозависимые и кислородонезависимые механизмы киллинга микроорганизмов. Существенную роль в защите организма от инфекции играют макрофаги альвеолярные и слизистой оболочки кишечника. Первые «работают» в относительно бедной опсонинами среде, поэтому они экспрессируют большое количество паттернраспознающих рецепторов, включая скавенджер-рецепторы, маннозные рецепторы, β-глюканспецифические рецепторы, дектин-1 и др. При микробной инфекции в очаг проникновения микробов дополнительно мигрирует большое число воспалительных моноцитов, способных дифференцироваться в различные клеточные линии в зависимости от цитокинового окружения.

Наличие иммунитета организма – необходимая защита, которая действует как невосприимчивость к чужеродным агентам, в том числе инфекционным возбудителям.

Необходимость иметь иммунитет заложена натурой. Способность сопротивляться берет начало в наследственном факторе. При этом нельзя оставить без внимания приобретенную возможность протекции организма, которая создает барьер для проникновения и размножения в теле различного рода бактерий и вирусов, а также защищает от воздействия производимых ими продуктов. Но иммунитет необязательно является защитой от патогенно – активных агентов. Ведь попадание в тело любого чужеродного микроорганизма способно вызвать иммунологическую реакцию, вследствие чего агент будет подвержен защитному воздействию и в последующей – уничтожен.

Отличие иммунитета заключается в многообразии происхождения, признаках проявления, механизме и некоторых других особенностях. Зависимо от источника иммунитет бывает:

  • Врожденный;
  • Приобретённый;

Главными отличительными характеристиками невосприимчивости считаются: генезис, форма появления, механизм и другие факторы. В зависимости от возникновения, иммунитет может быть врожденным и приобретенным. Первый подразделяется на видового и естественного типа.

Иммунология

Термин «иммунитет» связан со способностью и функциями организма создавать природное препятствие для попадания в него отрицательных агентов инородного происхождения, а также предусматривает способы распознавания чужого во врожденном иммунитете. Существуют механизмы противодействия подобных вредоносных организмов. Разнообразие методов борьбы с опасными возбудителями обусловлено видами и формами иммунитета, которые различают по многообразию и характеризующим признакам.

В зависимости от происхождения и формирования, механизм защиты может иметь врожденный характер, который также разделяется на несколько направлений. Различают неспецифического, естественного, наследственного типа природную способность организма сопротивляться. При таком виде иммунитета факторы защиты в человеческом теле сформировались . Они способствуют борьбе с агентами неизвестного происхождения с момента рождения человека. Данный тип иммунной системы характеризует способность человеческого существа находиться устойчивым к всевозможным болезням, которым может быть, уязвим организм животного, растения.

Приобретенного типа иммунитет характеризуется наличием факторов предохранения, сформировавшимися на протяжении всего жизненного периода. Ненатуральная форма защиты организма подразделяется на естественный и . Вырабатывание первого начинается после того, как человек подвергся влиянию в результате которого в нем начали вырабатываться специальные клетки – антитела, которые оказывают противодействие агенту данного заболевания. Искусственный вид защиты связан с получением организмом уже заранее приготовленных ненатуральным путем клеток, которые были введены внутрь. Имеет место, когда форма вируса активна.

Качественные свойства

Жизненно необходимой функцией, которую выполняет врожденная иммунная система, является регулярная выработка организмом антител естественным способом. Они предназначены для обеспечения первичной реакции на появление инородных агентов в организме. Следует понимать, каковы основные различия врожденного и приобретенного иммунитета. Достаточно важным свойством естественного ответа организма в виде реакции – присутствие системы комплемента. Это так называемый комплекс, который предусматривает в крови наличие белка, обеспечивающего определение и первичную защитную реакцию на чужеродные агенты. Задачами такой системы является выполнение следующих функций:

  • Опсонизация – процесс соединения в поврежденной клетке комплексных элементов;
  • Хемотакисис – слияние сигналов в результате происходящей химической реакции, которая осуществляет привлечение других иммунных агентов;
  • Мембранотропный повреждающий комплекс, в котором белковые сочетания в комплименте отвечают за разрушение защитной мембраны агентов опсонизации;

Преимущественным свойством естественного типа реакции организма является проявление первичного предохранения, на которые влияют молекулярные факторы врожденного иммунитета, в результате чего организм получает данные о неизвестных для него клетках чужеродного происхождения. Впоследствии такого процесса происходит образование приобретенной реакции, которая в некоторых случаях распознания неизвестных организмов будет готова для оказания противодействия, при этом, не привлекая посторонние защитные факторы.

Процесс формирования

Говоря об иммунитете, то он присутствует, как первичные признаки, у каждого организма, и заложен на генетическом уровне. Имеет отличительные черты врожденного иммунитета, а также обладает свойством быть переданным наследственным путем. Человек особенен тем, что у него есть внутренняя способность организма оказывать сопротивление множеству заболеваний, которым уязвимы другие живые существа.

В процессе формирования врожденной защиты главным берётся период внутриутробного развития и последующий стадия вскармливания младенца после появления на свет. Фундаментальное значение имеют переданные новорожденному антитела, дающие начало первым защитным признакам организма. Если в естественный процесс формирования вмешаться или воспрепятствовать, то это приводит к нарушениям , и стать причиной иммунодефицитного состояния. Таких факторов, негативно влияющих на детский организм, множество:

  • излучения;
  • воздействие агентов химического происхождения;
  • болезнетворные микробы во время развития в утробе матери.

Признаки врожденной защиты организма

В чем же заключается предназначение врожденного иммунитета и как происходит процесс защитной реакции?

Комплекс всех признаков, которые характеризуют врожденный иммунитет, определяют особую функцию противоборства организма на вторжение посторонних агентов. Создание подобной защитной линии происходит в несколько этапов, которые настраивают иммунитет на реакцию на патогенные микроорганизмы. К барьерам первичного типа относят кожный эпителий и слизистую оболочку, так как они обладают функцией резистентности. Как результат попадания патогенного организма – воспалительный процесс.

Важной защитной системой является работа лимфатических узлов, которые борются с патогенами до момента попадания в кровеносную систему. Нельзя оставить без внимания свойства крови, которая реагирует на попадание инфекции в тело действием специальных форменных элементов. В случае когда не происходит гибель вредоносных организмов в крови, то инфекционное заболевание начинает формирование и поражает внутренние системы человека.

Развитие клеток

Защитная реакция, зависимо от механизма протекции, может быть выражена гуморальным или клеточным ответом. Объединение которых представляет собой целостную защитную систему. Реакция организма в среде жидкостей и внеклеточного пространства называется гуморальной. Такой фактор врожденного типа иммунной системы можно разделить на:

  • специфический – В – лимфоциты формируют иммуноглобулины;
  • неспецифический – вырабатываются жидкости, которые не обладают антибактерицидным свойством. Сюда причисляют кровяную сыворотку, лизоцим;

К относится система комплимента.

Процессом поглощения агентов инородного происхождения путем воздействия мембраны клеток называется фагоцитоз. Иначе говоря, участвующие в реакции молекулы дифференцируются на:

  • лимфоциты группы Т – отличаются большой продолжительностью жизни, и разделяются по разным функциям. К ним можно отнести регуляторы, киллеры натуральные;
  • лимфоциты группы И – отвечающие за выработку антител;
  • нейтрофилы – отличаются присутствием антибиотических белков, у которых имеются , что объясняет миграцию к очагу воспаления;
  • эозинофилы – принимают участие в процессе фагоцитоза и отвечают за нейтрализацию гельминтов;
  • базофилы – предназначены для реакции на появление раздражителя;
  • моноциты – клетки специального назначения, превращающиеся в различного вида макрофаги и обладающие функциями, такими как, возможность активизировать процесс фагоцитоза, регулировать воспаление.

Факторы, стимулирующие клетки

В последних отчетах ВОЗ значатся такие данные, что практически половина населения планеты не имеет достаточного количества важных иммунных клеток – натуральных киллеров, в организме. Этим обуславливается учащение случаев выявления инфекционных и онкологических заболеваний у пациента. Но медицина развивается стремительно, и уже разработаны и широко используются средства, которые способны стимулировать активность киллеров.

Среди таких веществ имеет место применения адаптогенов, которые отличаются общеукрепляющими свойствами, иммуномодуляторов, трансферфактоных белков, которые обладают наибольшей степенью результативности. Подобного типа , способствующие усилению врожденного иммунитета, можно обнаружить в желтке яйца или молозиве.

Эти стимулирующие вещества распространены и используются в медицинских целях, выделяются искусственно из источников природного происхождения. На сегодня трансферфакторные белки доступны и представлены медицинскими препаратами. Какова природа воздействия? Заключается она в помощи в системы ДНК, запуске защитного процесса исходя из особенностей иммунитета человека.

Изучив природу появления и формирования невосприимчивости к бактериям, различие типов, становится понятно, что для нормальной работы организма надо иметь . Необходимо различать особенности врожденного и приобретенного. Оба дейстсвуют в комплексе, что способствует помощи организма в борьбе с попавшими в него вредными микроэлементами.

Чтобы противостояние было сильным и осуществлялись защитные функции качественно, необходимо изъять неполезные привычки из жизни и стараться следовать здоровому образу существования, дабы исключить возможность разрушения деятельности «крепких» и «рабочих» клеток.

Важна в таком случае комплексность подхода. Прежде всего, изменения должны коснуться вашего образа жизни, питания, использование народных способов повышения иммунитета. До того как вирусная инфекция убьёт организм, следует подготовиться к вероятной атаке. Здесь нужны процедуры закаливания, как простого способа защиты.

Также практикуется хождение без обуви, но это необязательно ходьба по улице. Здесь начинают , но только не по ледяному полу. Это также считается принципом закаливания, ведь поступок направлен на запуск защитных процессов в организме при помощи действия на точки активизации на ступнях, что приводит в оживлению клетки иммунной системы.

Существует множество способов и методов естественной подготовки организма к возможному воздействию внешних факторов. Главное, чтобы процедуры не были противопоказаниями по причине наличия заболеваний, которые в комплексе с методами закаливания могут обернуться негативно для организма.

Каждый знает, что организм имеет свою защиту, своеобразную «службу безопасности» — иммунитет. Эта тема на сегодняшний день интересна многим. Действительно, иммунитет очень важен для человеческого организма — чем устойчивее и крепче иммунитет, тем лучше здоровье. Работа иммунной системы четко слажена, но с возрастом и под воздействием неблагоприятных факторов окружающей среды она ослабевает. Это приводит к развитию различных патологических процессов. Все механизмы и свойства иммунной системы изучает специальная наука – иммунология.

Иммунитет – слово из латинского языка, которое означает «освобождение». Медицина объясняет иммунитет как способность организма защищать себя от многих чужеродных агентов – вирусов, бактерий, гельминтов, различных токсинов, атипичных (например, раковых) клеток и т.д.

Защитную функцию выполняют специальные антитела, иммуноглобулины. Если антител хватает, если они «сильные», то у болезни нет шансов развиться.

Иммунная система – это сложная защитная структура. Общеизвестно, что в борьбе чужеродными агентами принимают участие многие органы. Но основных всего два – красный костный мозг, в котором рождаются лимфоциты, и вилочковая железа (тимус), находящаяся в верхней части грудины. Иммунные клетки появляются в лимфоузлах, а созревают полностью в селезенке. В ней же уничтожаются старые лимфоциты, которые уже сделали свое дело. Внешняя защита организма – это, прежде всего, кожа, на которой погибают различные болезнетворные бактерии под воздействием специальных веществ, содержащихся в кожном сале. Другим барьером являются слизистые оболочки, пропитанные лимфоидной тканью и вырабатывающие специальные жидкости (слезы, слюна), которые тоже уничтожают инфекционных агентов. Уничтожают бактерии также сальные и потовые железы, ворсинки дыхательных путей, ресницы и др. По крови и лимфе все время передвигаются фагоциты (лейкоциты), которые поглощают болезнетворную микрофлору. Если лейкоцитов в крови много, то это сигнал того, что развивается заболевание. Когда у человека хорошее кровообращение, хороший состав крови, то это говорит о том, что иммунитет в порядке. Иммунитет подразделяют на врожденный и приобретенный.

Что такое врожденный иммунитет

Уже из названия понятно, что врожденный иммунитет (его называют еще неспецифическим) есть у человека с самого рождения. Врожденный иммунитет – это иммунитет к заболеваниям, которые характерны только для одного вида организмов. Например, человек имеет врожденный иммунитет к собачьей чуме и никогда ею не заболеет. А собака никогда не заболеет корью или холерой, потому что у нее есть врожденный иммунитет к этим заболеваниям. Исходя из этого, врожденный иммунитет можно назвать видовой иммунитет, поскольку он характерен для конкретного вида живых организмов.

Врожденный иммунитет есть у каждого человека, он передается от родителей, т.е. закреплен генетически. Поэтому его часто называют еще и наследственным иммунитетом. Антитела, которые составляют основу начальных защитных сил человека, когда он рождается, передаются от матери. Вот почему очень важное значение играют правильное внутриутробное развитие и естественное (грудное) вскармливание ребенка – только в этом случае формируется хороший врожденный иммунитет. Кровоток ребенка, находящегося в утробе матери, тесно связан с ее кровеносной системой за счет плацентарного барьера. За счет этого барьера ребенок с кровью получает от матери кислород, белки, жиры, углеводы, витамины, гормоны и др. необходимые вещества, в том числе факторы иммунной системы. Они защищают ребенка. Поэтому, когда ребенок рождается, он уже имеет некоторый иммунитет. Как только малыш начинает питаться материнским молоком (причем молоком именно биологической матери), поступление этих веществ в организм продолжается. В желудке они не разрушаются, потому что желудочный сок младенца низкой кислотности. Далее эти вещества иммунной системы поступают в кишечник, из которого всасываются в кровь, а затем разносятся кровью по всему организму. Именно этот механизм и обеспечивает врожденный иммунитет.

Отмечено, что дети, которые первые 6 месяцев питаются материнским молоком, практически не болеют в первый год жизни. Те же дети, которые вынуждены были находиться на искусственном вскармливании с первых дней жизни, болеют часто как в первый год жизни, так и в последующем. Если формирование естественной защиты нарушено, то это может привести к иммунодефицитному состоянию.

Факторы врожденного иммунитета

Механизм действия врожденного иммунитета – это совокупность определенных факторов, которые создают линию защиты человеческого организма от чужеродных агентов. Она состоит из нескольких защитных барьеров:

  1. Первичные барьеры – кожа и слизистые оболочки – при проникновении чужеродного агента развивается воспалительный процесс.
  2. Лимфатические узлы – эта защита борется с инфекционным агентом до попадания его в кровь. Если она ослаблена, то инфекция попадает в кровь.
  3. Кровь – когда инфекция попадает в кровь, то в работу включаются специальные элементы крови. В том случае, если они не в силах сдержать инфекцию, то она попадает во внутренние органы.

Кроме того, врожденный иммунитет имеет еще гуморальные и клеточные факторы. Гуморальные факторы делят на специфические и неспецифические. К специфическим относят иммуноглобулины, а к неспецифическим – жидкости, которые способны уничтожать бактерий (сыворотка крови, лизоцим, секреты разных желез). К клеточным факторам относят те клетки организма, которые принимают участие в защите от чужеродных агентов – Т- и В-лимфоциты, базофилы, нейтрофилы, эозинофилы, моноциты.

Итак, врожденный иммунитет имеет некоторые характерные особенности:

  • не меняется в течение жизни, определен генетически;
  • передается по наследству от поколения к поколению;
  • является видовым, т.е. как сформирован, так и закреплен для каждого отдельного вида в процессе эволюции;
  • распознаются строго определенные антигены;
  • устойчивость к определенным антигенам носит определенный характер;
  • врожденный иммунитет всегда включается в тот момент, когда внедряется антиген;
  • антиген самостоятельно удаляется из организма;
  • не формируется иммунная память.

Приобретенный иммунитет

Кроме врожденного, у человека есть еще и так называемый приобретенный иммунитет.

Он формируется в течение всей жизни и, в отличие от врожденного иммунитета, не передается по наследству. Приобретенный иммунитет начинает формироваться во время первой встречи с антигеном, запуская иммунные механизмы, которые запоминают этот антиген и вырабатывают специфические антитела к этому антигену. Благодаря этому, когда организм встречается в следующий раз с этим же антигеном, иммунный ответ возникает намного быстрее и становится более эффективным. В этом случае не происходит повторного заболевания. Например, если человек переболел один раз корью, ветрянкой или свинкой, то второй раз он уже не заболеет. В отличие от врожденного, приобретенный иммунитет:

  • не передается по наследству;
  • формируется в течение всей жизни, при этом изменяет набор генов;
  • индивидуален для каждого человека;
  • распознает любые антигены;
  • устойчивость к определенным антигенам строго индивидуальна;
  • когда происходит первый контакт, то иммунитет включается, в среднем, с 5-го дня;
  • чтобы удалить антиген, требуется помощь врожденного иммунитета;
  • формирует иммунную память.

Приобретенный иммунитет может быть как активным, так и пассивным.

Активный — формируется тогда, когда человек перенес какое-либо заболевание или ему была введена специфическая вакцина с ослабленными микроорганизмами или их антигенами. В результате может развиться пожизненная, длительная или кратковременная невосприимчивость. Это зависит от свойств возбудителя. Например, от кори – пожизненная, от брюшного типа – длительная, а от гриппа – кратковременная невосприимчивость. Активный приобретенный иммунитет не может реализоваться в случае иммунодефицита. Чтобы активный приобретенный иммунитет работал, иммунная система должна быть здоровой. Именно этот вид иммунитета формирует иммунную память.

Пассивный – формируется тогда, когда в организм вводят готовые антитела (например, от переболевшего человека) или антитела передаются новорожденному с молозивом матери. Приобретенный пассивный иммунитет развивается мгновенно и формируется в условиях иммунодефицита. Однако по сравнению с активным, приобретенный пассивный иммунитет имеет более низкую эффективность, не формирует иммунную память и имеет более низкую эффективность.

Врожденный и приобретенный иммунитет – это единая система защита, о которой надо постоянно заботиться и которую нужно постоянно укреплять. Потому что хороший иммунитет – это залог крепкого здоровья. Подходить к укреплению иммунной системы необходимо комплексно. Человеку жизненно необходим крепкий и здоровый иммунитет, который избавит организм от проникших чужеродных агентов и не позволит развиться различным заболеваниям.

Ответы по иммунологии,письменная часть

1.Современное определение иммунитета.Понятие о приобретенном и врожденном иммунитете .

Иммунитет - совокупность физиологических процессов и механизмов, направленных на сохранение антигенного гомеостаза организма от биологически активных веществ и существ, несущих генетически чужеродную антигенную информацию или от генетически чужеродных белковых агентов.

Под иммунитетом, по определению академика Р.В. Петрова, понимают «Способ защиты организма от живых тел и веществ, несущих признаки генетически чужеродной информации (включая микроорганизмы, чужеродные клетки, ткани или генетически изменившиеся собственные клетки, в том числе опухолевые)».

Врожденный и приобретенный иммунитет представляет собой две взаимодействующие части одной системы, обеспечивающей развитие иммунного ответа на генетически чужеродные субстанции.

Врожденный иммунитет - наследственно закрепленная система защиты многоклеточных организмов от любых патогенных и непатогенных микроорганизмов, а также эндогенных продуктов тканевой деструкции.

Врождённый иммунитет - способность организма обезвреживать чужеродный и потенциально опасный биоматериал (микроорганизмы ,трансплантат ,токсины ,опухолевые клетки , клетки, инфицированныевирусом ),

существующая изначально, до первого попадания этого биоматериала в организм.

Система врождённого иммунитета намного более эволюционно древняя, чем системаприобретённого иммунитета , и присутствует у всех видов растений и животных, но подробно изучена только упозвоночных . По сравнению с системой приобретённого иммунитета система врождённого активируется при первом появлении патогена быстрее, но распознаёт патоген с меньшей точностью. Она реагирует не на конкретные специфическиеантигены , а на определённые классы антигенов, характерные дляпатогенных организмов (полисахариды клеточной стенки бактерий, двунитеваяРНК некоторых вирусов и т.п.).

У врождённого иммунитета есть клеточный (фагоциты ,гранулоциты ) и гуморальный (лизоцим ,интерфероны ,система комплемента ,медиаторы воспаления ) компоненты. Местная неспецифическая иммунная реакция иначе называетсявоспалением .

Приобретённый иммунитет - способность организма обезвреживать чужеродные и потенциально опасные микроорганизмы (или молекулы токсинов), которые уже попадали в организм ранее. Представляет собой результат работы системы высокоспециализированных клеток (лимфоцитов ), расположенных по всему организму. Считается, что система приобретённого иммунитета возникла у челюстноротых позвоночных . Она тесно взаимосвязана с гораздо более древней системой врождённого иммунитета , которая является основным средством защиты от патогенных микроорганизмов у большинства живых существ.

Различают активный и пассивный приобретённый иммунитет. Активный может возникать после перенесения инфекционного заболевания или введения в организмвакцины . Образуется через 1-2 недели и сохраняется годами или десятками лет. Пассивно приобретённый возникает при передаче готовыхантител от матери к плоду черезплаценту или сгрудным молоком , обеспечивая в течение нескольких месяцев

невосприимчивость новорожденных к некоторым инфекционным заболеваниям. Такой иммунитет можно создать и искусственно, вводя в организм иммунные сыворотки , содержащиеантитела против соответствующихмикробов илитоксинов (традиционно используют при укусах ядовитых змей).

Как и врождённый иммунитет, приобретённый иммунитет разделяют на клеточный (T-лимфоциты) и гуморальный (антитела, продуцируемые B-лимфоцитами; комплемент является компонентом как врождённого, так и приобретённого иммунитета).

2.Иммунная система

Иммунная система представляет собой совокупность специализированных органов, тканей и клеток, способных выполнять функцию иммунитета и другие жизненно важные

функции, такие, как регуляция и координация межсистемных связей. По крайней мере три системы: нервная, эндокринная и иммунная - составляют основу жизнедеятельности организма. Иммунологическая индивидуальность обеспечивает сохранение каждой особи в пределах вида.

Функция иммунной системы (а более конкретно - иммунитет) выходит далеко за рамки защиты от инфекционных заболеваний. Противораковый, трансплантационный иммунитет, иммунные взаимоотношения мать-плод, ликвидация пострадиационных последствий, неблагоприятных воздействий экологических факторов, иммунопрофилактика инфекционных и неинфекционных заболеваний и многие другие процессы реализуются иммунной системой.

Исходя из этого уникальность физиологической роли иммунной системы заключается в контроле генетического постоянства внутренней среды организма в период онтогенетического развития. Всё генетически чужеродное для конкретного организма элиминируется с участием его иммунной системы.

Иммунная система высокоспециализирована и обладает целым комплексом уникальных свойств, многие из которых не дублируются в других системах организма.

Следующие феномены определяют основные свойства иммунной системы:

высокая специфичность проявляется высокоспецифичным и селективным связыванием антител с конкретным антигеном, индуцировавшим их образование. Лимфоциты с помощью антигенспецифических рецепторов распознают антигенные молекулы, различающиеся 1-2 аминокислотными остатками, и удаляют их из организма. Упрощенная формула иммунной специфичности: «один антиген - одно антитело - один клон лимфоцитов»;

высокая степень чувствительности -

иммунокомпетентные клетки осуществляют распознавание антигена на уровне отдельных молекул. Взаимодействие «антиген-антитело» - одна из наиболее высокочув ствительных биологических реакций. Тесты, основанные на

(иммуноферментные, радиоиммунные и др.), позволяют идентифицировать пикограммовые и близкие к ним количества анализируемого вещества;

иммунологическая индивидуальность - для каждого организма характерен свой, контролируемый генетически тип иммунного ответа. Основной постулат иммуногенетики

- «конкретность иммунного ответа»;

Клональный принцип организациииммунокомпетентных клеток, проявляющийся в способности всех клеток в пределах отдельного клона отвечать только на одну антигенную детерминанту. Согласно клонально-селекционной теории Ф. Бернета, в иммунной системе формируются клоны лимфоцитов, способные распознать огромное количество (10 9 -10 и ) вариантов антигенных молекул, составляющих так называемый антигенный репертуар;

Иммунологическая память - способность иммунной системы (клеток памяти) отвечать ускоренно и усиленно на повторное введение антигена. Это свойство иммунной системы составляет основу анамнестического ответа на повторный контакт с антигеном (например, при инфекции или вакцинации);

Иммунная толерантность - специфическая неотвечаемость на антигены, в том числе на антигены собственного организма (аутоантигены). Нарушение этого свойства приводит к срыву толерантности и формированию аутоиммунной патологии;

Высокая способность иммунной системы к регенерации-

свойство иммунной системы к поддержанию гомеостаза лимфоцитов за счет пополнения пула «наивных» клеток и контроля популяции клеток памяти. Нарушение гомеостаза лимфоцитов (лимфопения) лежит в основе многих заболеваний, в первую очередь иммунодефицитных; -способность клеток иммунной системы к рециркуляции - перемещение клеток через кровеносную и лимфатическую систему обеспечивает единство и целостность иммунной системы. Лимфоциты, моноциты, нейтрофилы и другие клетки способны мигрировать через эндотелий кровеносных и лимфатических сосудов в центральные и периферические органы и ткани иммунной системы, а также в различные ткани в норме и при патологии (чаще воспаление). В циркуляции могут находиться практически все клеточные элементы иммунной системы, в том числе гемопоэтические стволовые клетки;

-«двойное распознавание» антигена Т-лимфоцитами - уникаль ная способность Т-лимфоцита распознавать чужеродные антигенные пептиды в ассоциации с собственными молекулами главного комплекса гистосовместимости (у человека с HLA). Подобный механизм высокоспециализирован и отсутствует в других системах организма; - неразборчивость иммунной системы.Иммунные механизмы не всегда работают во благо: в ряде случаев они могут оказывать иммуноагрессивное действие в собственном организме, вызывая тяжелую

патологию: аллергические, аутоиммунные, иммунокомплексные заболевания и др.;

Регуляторное действие на другие системы организма.

Иммунная система через прямые межклеточные контакты и опосредованно через

огромное количество медиаторных молекул (цитокины, хемокины, гормоны тимуса, пептиды и др.) оказывает регуляторное воздействие практически на все системы организма. Нарушение регуляторных механизмов лежит в основе многих заболеваний человека, часто с поражением органов и тканей, формально не включаемых в иммунную систему (например, поражение суставов, печени, кожи, ЦНС и др.). От того, насколько полноценно функционирует иммунная система, зависят многие процессы нормальной жизнедеятельности организма. Эта функция может быть непосредственно не связана с иммунитетом, но в процессе иммунного ответа выработка иммуноцитокинов значительно усиливается, и их действие распространяется на реализацию регуляторных воздействий как внутри, так и за пределами иммунной системы. Современная иммунология большое внимание уделяет изучению роли цитокинов в межсистемных регуляторных процессах.

Таким образом, наряду с нервной и эндокринной иммунная система служит одной из интегрирующих систем регуляции, действующих на уровне целого организма.

3.объекты исследования в иммунологии

1.1. ИНБРЕДНЫЕ ЖИВОТНЫЕ

Для проведения фундаментальных исследований в иммунологии лучший объект - инбредные мыши. Инбредные животные - это животные, полученные путем инбридинга (in breed - выводить породу, разводить), т.е. последовательных близкородственных скрещиваний с целью получения гомозиготного и генетически идентичного потомства. Среди потомков для дальнейших скрещиваний сначала отбирают особей по признакам внешнего сходства, в последующих поколениях уже тестируют на совпадение групп крови и приживление кожных лоскутов. Через 20 поколений и более такой селекции получают мышей с весьма высокой степенью гомозиготности, обозначаемых как чистая линия, в пределах которой все животные генетически почти идентичны (например, как однояйцевые близнецы у человека).

Главная цель выведения чистых линий мышей и исследований на них - получение возможности многократного повторения экспериментов на генетически одинаковых организмах, т.е. обеспечение воспроизводимости результатов исследований в высоком смысле этого понятия, что полностью исключено при решении многих иммунологических задач с использованием беспородных животных. Подобные проблемы существуют при оценке результатов иммунных процессов у человека.

Мыши стали исключительными экспериментальным животными в иммунологии в силу ряда причин, главные из которых следующие:

1) короткий срок беременности (21 сут) и множественное потомство от каждой самки (5-8 детенышей в одни роды) позволяют весьма быстро вывести чистые линии, что важно по вышеназванным причинам;

2) себестоимость содержания мышей по сравнению с таковой других млекопитающих наименьшая;

3) структура и функция иммунной системы мыши и человека во многом сходны;

4) выведение чистых линий мышей показало, что, например, некоторые из них (несмотря на гомозиготность) весьма крепкие и здоровые, т.е. не всякий инбридинг приводит к вырождению.

Кроме того, путем целенаправленного отбора тех или иных свойств созданы многочисленные линии мышей с точно заданными характеристиками, и это позволяет выбирать особей, необходимых для достижения конкретных научных целей. Характеристики животных разных линий занесены в соответствующие документы; на них ориентируются питомники по разведению чистолинейных мышей, имеющиеся во всех странах, где успешно занимаются проблемами экспериментальной иммунологии. Из наиболее прославленных питомников хотим упомянуть Джексоновскую лабораторию (The Jackson Laboratory) в США. Ежегодно она поставляет в университеты, медицинские институты и научно-исследовательские лаборатории всего мира приблизительно 2 млн животных 2500 разных линий, стоков и животных-моделей. Около 97% этих животных можно приобрести только в Джексоновской лаборатории. В каждом питомнике

разводимые и поддерживаемые линии мышей имеют паспорт, систематизированы в соответствующих базах данных и доступны для широкого применения. Известен гаплотип (Н-2) мышей разных линий, их окрас, поведенческие характеристики, особенности функционирования иммунной системы и прочие свойства, необходимые не только для иммунологических исследований, но и исследований в других областях биологии и медицины (онкология, фармакология, экология и т.д.).

БИОЛОГИЧЕСКИЕ МАТЕРИАЛЫ

ДЛЯ ИССЛЕДОВАНИЙ

Для исследования иммунной системы используются следующие биологические материалы.

1. Цельная периферическая кровь.

2. Сыворотка крови - жидкая фракция крови, освобожденная от фибриногена.

3. Плазма крови - жидкая фракция крови, содержащая фибриноген, следовательно, способная к образованию сгустков фибрина.

4. Клетки крови, отделенные от жидкой фракции.

5. Цереброспинальная жидкость.

6. Синовиальная жидкость.

7. Бронхоальвеолярный лаваж.

8. Выделения слизистых секретов половых органов (из канала шейки матки, влагалища, семенная жидкость).

9. Выделения из носа (смывы или адсорбция на пористые материалы).

10. Моча.

11. Супернатанты, полученные от культивируемых in vitro клеток

12. Гомогенаты тканей (биопсия или post mortem).

13. Цитоплазматические и ядерные компоненты клеток. Биологический материал разного происхождения отличается по

биохимическому составу, ионной силе, вязкости. Все эти