Звуковые волны быстрее всего распространяются в газах. Школьная энциклопедия. Графическое изображение невидимой волны

На большие расстояния звуковая энергия распространяется только вдоль пологих лучей, которые на всем пути не касаются дна океана. В этом случае ограничением, накладываемым средой на дальность распространения звука, является поглощение его в морской воде. Основной механизм поглощения связан с релаксационными процессами, сопровождающими нарушение акустической волной термодинамического равновесия между ионами и молекулами растворенных в воде солей. Следует отметить, что главная роль в поглощении в широком диапазоне звуковых частот принадлежит серномагниевой соли MgSO4, хотя в процентном отношении ее содержание в морской воде совсем невелико - почти в 10 раз меньше, чем, например, каменной соли NаС1, которая тем не менее не играет сколько-нибудь заметной роли в поглощении звука.

Поглощение в морской воде, вообще говоря, тем больше, чем выше частота звука. На частотах от 3-5 до по крайней мере 100 кГц, где доминирует указанный выше механизм, поглощение пропорционально частоте в степени примерно 3/2. На более низких частотах включается новый механизм поглощения (возможно, он связан с наличием в воде солей бора), который становится особенно заметным в диапазоне сотен герц; здесь уровень поглощения аномально высок и существенно медленнее падает с уменьшением частоты.

Чтобы более наглядно представить себе количественные характеристики поглощения в морской воде, заметим, что за счет этого эффекта звук с частотой 100 Гц ослабляется в 10 раз на пути в 10 тыс. км, а с частотой 10 кГц - на расстоянии только в 10 км (рисунок 2). Таким образом, только низкочастотные звуковые волны могут быть использованы для дальней подводной связи, для дальнего обнаружения подводных препятствий и т.п .

Рисунок 2 – Расстояния, на которых звуки разных частот затухают в 10 раз при распространении в морской воде.

В области слышимых звуков для диапазона частот 20-2000 Гц дальность распространения под водой звуков средней интенсивности достигает 15-20 км, а в области ультразвука – 3-5 км.

Если исходить из величин затухания звука, наблюдаемых в лабораторных условиях в малых объёмах воды, то можно было бы ожидать значительно больших дальностей. Однако в естественных условиях, кроме затухания, обусловленного свойствами самой воды (т. н. вязкого затухания), сказываются ещё его рассеяние и поглощение различными неоднородностями среды.

Рефракция звука, или искривление пути звукового луча, вызывается неоднородностью свойств воды, главным образом по вертикали, вследствие трёх основных причин: изменения гидростатического давления с глубиной, изменения солёности и изменения температуры вследствие неодинакового прогрева массы воды солнечными лучами. В результате совокупного действия этих причин скорость распространения звука, составляющая около 1450 м/сек для пресной воды и около 1500 м/сек для морской, изменяется с глубиной, причём закон изменения зависит от времени года, времени дня, глубины водоёма и ряда др. причин. Звуковые лучи, вышедшие из источника под некоторым углом к горизонту, изгибаются, причём направление изгиба зависит от распределения скоростей звука в среде. Летом, когда верхние слои теплее нижних, лучи изгибаются книзу и в большинстве своём отражаются от дна, теряя при этом значительную долю своей энергии. Наоборот, зимой, когда нижние слои воды сохраняют свою температуру, между тем как верхние слои охлаждаются, лучи изгибаются кверху и претерпевают многократные отражения от поверхности воды, при которых теряется значительно меньше энергии. Поэтому зимой дальность распространения звука больше, чем летом. Вследствие рефракции образуются т. н. мёртвые зоны, т. е. области, расположенные недалеко от источника, в которых слышимость отсутствует.

Наличие рефракции, однако, может приводить к увеличению дальности распространения звука - явлению сверхдальнего распространения звуков под водой. На некоторой глубине под поверхностью воды находится слой, в котором звук распространяется с наименьшей скоростью; выше этой глубины скорость звука увеличивается из-за повышения температуры, а ниже - вследствие увеличения гидростатического давления с глубиной. Этот слой представляет собой своеобразный подводный звуковой канал. Луч, отклонившийся от оси канала вверх или вниз, вследствие рефракции всегда стремится попасть в него обратно. Если поместить источник и приёмник звука в этом слое, то даже звуки средней интенсивности (например, взрывы небольших зарядов в 1-2 кг) могут быть зарегистрированы на расстояниях в сотни и тысячи км. Существенное увеличение дальности распространения звука при наличии подводного звукового канала может наблюдаться при расположении источника и приёмника звука не обязательно вблизи оси канала, а, например, у поверхности. В этом случае лучи, рефрагируя книзу, заходят в глубоководные слои, где они отклоняются кверху и выходят снова к поверхности на расстоянии в несколько десятков км от источника. Далее картина распространения лучей повторяется и в результате образуется последовательность т. н. вторичных освещенных зон, которые обычно прослеживаются до расстояний в несколько сотен км.

На распространение звуков высокой частоты, в частности ультразвуков, когда длины волн очень малы, оказывают влияние мелкие неоднородности, обычно имеющиеся в естественных водоёмах: микроорганизмы, пузырьки газов и т.д. Эти неоднородности действуют двояким образом: они поглощают и рассеивают энергию звуковых волн. В результате с повышением частоты звуковых колебаний дальность их распространения сокращается. Особенно сильно этот эффект заметен в поверхностном слое воды, где больше всего неоднородностей. Рассеяние звука неоднородностями, а также неровностями поверхности воды и дна вызывает явление подводной реверберации, сопровождающей посылку звукового импульса: звуковые волны, отражаясь от совокупности неоднородностей и сливаясь, дают затягивание звукового импульса, продолжающееся после его окончания, подобно реверберации, наблюдающейся в закрытых помещениях. Подводная реверберация - довольно значительная помеха для ряда практических применений гидроакустики, в частности для гидролокации.

Пределы дальности распространения подводных звуков лимитируются ещё и т.н. собственными шумами моря, имеющими двоякое происхождение. Часть шумов возникает от ударов волн на поверхности воды, от морского прибоя, от шума перекатываемой гальки и т.п. Другая часть связана с морской фауной; сюда относятся звуки, производимые рыбами и др. морскими животными .

Если звуковая волна не встречает препятствий на своём пути, она распространяется равномерно по всем направлениям. Но и не всякое препятствие становится преградой для неё.

Встретив препятствие на своём пути, звук может огибать его, отражаться, преломляться или поглощаться.

Дифракция звука

Мы можем разговаривать с человеком, стоящим за углом здания, за деревом или за забором, хотя и не видим его. Мы слышим его, потому что звук способен огибать эти предметы и приникать в область, находящуюся за ними.

Способность волны огибать препятствие называется дифракцией .

Дифракция возможна, когда длина звуковой волны превышает размер препятствия. Звуковые волны низкой частоты имеют довольно большую длину. Например, при частоте 100 Гц она равна 3,37 м. С уменьшением частоты длина становится ещё больше. Поэтому звуковая волна с лёгкостью огибает объекты, соизмеримые с ней. Деревья в парке совершенно не мешают нам слышать звук, потому что диаметры их стволов значительно меньше длины звуковой волны.

Благодаря дифракции, звуковые волны проникают через щели и отверстия в препятствии и распространяются за ними.

Расположим на пути звуковой волны плоский экран с отверстием.

В случае, когда длина звуковой волны ƛ намного превышает диаметр отверстия D , или эти величины примерно равны, то позади отверстия звук достигнет всех точек области, которая находится за экраном (область звуковой тени). Фронт выходящей волны будет выглядеть как полусфера.

Если же ƛ лишь немного меньше диаметра щели, то основная часть волны распространяется прямо, а небольшая часть незначительно расходится в стороны. А в случае, когда ƛ намного меньше D , вся волна пойдёт в прямом направлении.

Отражение звука

В случае попадания звуковой волны на границу раздела двух сред, возможны разные варианты её дальнейшего распространения. Звук может отразиться от поверхности раздела, может перейти в другую среду без изменения направления, а может преломиться, то есть перейти, изменив своё направление.

Предположим, на пути звуковой волны появилось препятствие, размер которого намного больше длины волны, например, отвесная скала. Как поведёт себя звук? Так как обогнуть это препятствие он не может, то он отразится от него. За препятствием находится зона акустической тени .

Отражённый от препятствия звук называется эхом .

Характер отражения звуковой волны может быть разным. Он зависит от формы отражающей поверхности.

Отражением называют изменение направления звуковой волны на границе раздела двух разных сред. При отражении волна возвращается в среду, из которой она пришла.

Если поверхность плоская, звук отражается от неё подобно тому, как отражается луч света в зеркале.

Отражённые от вогнутой поверхности звуковые лучи фокусируются в одной точке.

Выпуклая поверхность звук рассеивает.

Эффект рассеивания дают выпуклые колонны, крупные лепные украшения, люстры и т.д.

Звук не переходит из одной среды в другую, а отражается от неё, если плотности сред значительно отличаются. Так, звук, появившийся в воде, не переходит в воздух. Отражаясь от границы раздела, он остаётся в воде. Человек, стоящий на берегу реки, не услышит этот звук. Это объясняется большой разницей волновых сопротивлений воды и воздуха. В акустике волновое сопротивление равно произведению плотности среды на скорость звука в ней. Так как волновое сопротивление газов значительно меньше волновых сопротивлений жидкостей и твёрдых тел, то попадая на границу воздуха и воды, звуковая волна отражается.

Рыбы в воде не слышат звук, появляющийся над поверхностью воды, но хорошо различают звук, источником которого является тело, вибрирующее в воде.

Преломление звука

Изменение направления распространения звука называется преломлением . Это явление возникает, когда звук переходит из одной среды в другую, и скорости его распространения в этих средах различны.

Отношение синуса угла падения к синусу угла отражения равно отношению скоростей распространения звука в средах.

где i – угол падения,

r – угол отражения,

v 1 – скорость распространения звука в первой среде,

v 2 – скорость распространения звука во второй среде,

n – показатель преломления.

Преломление звука называют рефракцией .

Если звуковая волна падает не перпендикулярно поверхности, а под углом, отличным от 90 о, то преломлённая волна отклонится от направления падающей волны.

Рефракция звука может наблюдаться не только на границе раздела сред. Звуковые волны могут менять своё направление в неоднородной среде – атмосфере, океане.

В атмосфере причиной рефракции служат изменения температуры воздуха, скорость и направление перемещения воздушных масс. А в океане она появляется из-за неоднородности свойств воды – разного гидростатического давления на разных глубинах, разной температуры и разной солёности.

Поглощение звука

При встрече звуковой волны с поверхностью, часть её энергии поглощается. А какое количество энергии может поглотить среда, можно определить, зная коэффициент поглощения звука. Этот коэффициент показывает, какую часть энергии звуковых колебаний поглощает 1 м 2 препятствия. Он имеет значение от 0 до 1.

Единицу измерения звукопоглощения называют сэбин . Своё название она получила по имени американского физика Уоллеса Клемента Сэбина, основателя архитектурной акустики. 1 сэбин – это энергия, которую поглощает 1 м 2 поверхности, коэффициент поглощения которой равен 1. То есть, такая поверхность должна поглощать абсолютно всю энергию звуковой волны.

Реверберация

Уоллес Сэбин

Свойство материалов поглощать звук широко используют в архитектуре. Занимаясь исследованием акустики Лекционного зала, части построенного Fogg Museum, Уоллес Клемент Сэбин пришёл к выводу, что существует зависимость между размерами зала, акустическими условиями, типом и площадью звукопоглощающих материалов и временем реверберации .

Реверберацией называют процесс отражения звуковой волны от препятствий и её постепенное затухание после выключения источника звука. В закрытом помещении звук может многократно отражаться от стен и предметов. В результате возникают различные эхосигналы, каждый из которых звучит как бы обособленно. Этот эффект называют эффектом реверберации .

Самой важной характеристикой помещения является время реверберации , которое ввёл и вычислил Сэбин.

где V – объём помещения,

А – общее звукопоглощение.

где a i – коэффициент звукопоглощения материала,

S i - площадь каждой поверхности.

Если время реверберации велико, звуки словно "бродят" по залу. Они накладываются друг на друга, заглушают основной источник звука, и зал становится гулким. При маленьком времени реверберации стены быстро поглощают звуки, и они становятся глухими. Поэтому для каждого помещения должен быть свой точный расчёт.

По результатам своих вычислений Сэбин расположил звукопоглощающие материалы таким образом, что уменьшился «эффект эха». А Симфонический Зал Бостона, при создании которого он был акустическим консультантом, до сих пор считается одним из лучших залов в мире.

Интересные факты: где быстрее распространяется звук?

Во время грозы сначала видна вспышка молнии и лишь через некоторое время слышатся раскаты грома. Это запаздывание возникает из-за того, что скорость звука в воздухе значительно меньше скорости света, идущего от молнии. Любопытно вспомнить, в какой среде звук распространяется быстрее всего, а где вообще не распространяется?

Опыты и теоретические расчеты скорости звука в воздухе предпринимались ещё с XVII века, но только через два столетия французский ученый Пьер-Симон де Лаплас вывел окончательную формулу для её определения. Скорость звука зависит от температуры: с увеличением температуры воздуха она растёт, а с уменьшением - падает. При 0° скорость звука составляет 331 м/с (1192 км/ч), при +20° она уже равна 343 м/с (1235 км/ч).

Скорость звука в жидкостях, как правило, больше скорости звука в воздухе. Опыты по определению скорости впервые провели на Женевском озере в 1826 году. Два физика сели в лодки и разъехались на 14 км. На одной лодке поджигали порох и одновременно ударяли в колокол, опущенный в воду. Звук колокола с помощью специального рупора, также опущенного в воду, улавливался на другой лодке. По интервалу времени между вспышкой света и приходом звукового сигнала определили скорость звука в воде. При температуре +8° она оказалась равной примерно 1440 м/с. Люди, работающие в подводных сооружениях, подтверждают, что под водой отчетливо слышны береговые звуки, а рыбаки знают, что рыба уплывает при малейшем подозрительном шуме на берегу.

Скорость звука в твёрдых телах больше, чем в жидкостях и газах. К примеру, если приложить ухо к рельсу, то после удара по другому концу рельса человек услышит два звука. Один из них «придёт» до уха по рельсу, другой – по воздуху. Хорошей проводимостью звука обладает земля. Поэтому в стародавние времена при осаде в крепостных стенах помещали «слухачей», которые по звуку, передаваемому землёй, могли определить, ведет ли враг подкоп к стенам или нет, мчится конница или нет. Кстати, благодаря этому люди, потерявшие слух, иной раз способны танцевать под музыку, которая доходит до их слуховых нервов не через воздух и наружное ухо, а через пол и кости.

Скорость звука – скорость распространения упругих волн в среде как в продольных (в газах, жидкостях или твёрдых телах), так и в поперечных, сдвиговых (в твёрдых телах), определяется упругостью и плотностью среды. Скорость звука в твёрдых телах больше, чем в жидкостях. В жидкостях, в том числе в воде, звук мчится в 4 с лишним раза быстрее, чем в воздухе. Скорость звука в газах зависит от температуры среды, в монокристаллах - от направления распространения волны.

>>Физика: Звук в различных средах

Для распространения звука необходима упругая среда. В вакууме звуковые волны распространяться не могут, так как там нечему колебаться. В этом можно убедиться на простом опыте. Если поместить под стеклянный колокол электрический звонок, то по мере выкачивания из-под колокола воздуха мы обнаружим, что звук от звонка будет становиться все слабее и слабее, пока не прекратится совсем.

Звук в газах . Известно, что во время грозы мы сначала видим вспышку молнии и лишь через некоторое время слышим раскаты грома (рис. 52). Это запаздывание возникает из-за того, что скорость звука в воздухе значительно меньше скорости света, идущего от молнии.

Скорость звука в воздухе впервые была измерена в 1636 г. французским ученым М. Мерсенном. При температуре 20 °С она равна 343 м/с, т.е. 1235 км/ч. Заметим, что именно до такого значения уменьшается на расстоянии 800 м скорость пули, вылетевшей из пулемета Калашникова (ПК). Начальная скорость пули 825 м/с, что значительно превышает скорость звука в воздухе. Поэтому человек, услышавший звук выстрела или свист пули, может не беспокоиться: эта пуля его уже миновала. Пуля обгоняет звук выстрела и достигает своей жертвы до того, как приходит этот звук.

Скорость звука зависит от температуры среды: с увеличением температуры воздуха она возрастает, а с уменьшением - убывает. При 0 °С скорость звука в воздухе составляет 331 м/с.

В разных газах звук распространяется с разной скоростью. Чем больше масса молекул газа, тем меньше скорость звука в нем. Так, при температуре 0 °С скорость звука в водороде 1284 м/с, в гелии - 965 м/с, а в кислороде - 316 м/с.

Звук в жидкостях . Скорость звука в жидкостях, как правило, больше скорости звука в газах. Скорость звука в воде впервые была измерена в 1826 г. Ж- Колладоном и Я. Штурмом. Свои опыты они проводили на Женевском озере в Швейцарии (рис. 53). На одной лодке поджигали порох и одновременно ударяли в колокол, опущенный в воду. Звук этого колокола с помощью специального рупора, также опущенного в воду, улавливался на другой лодке, которая находилась на расстоянии 14 км от первой. По интервалу времени между вспышкой света и приходом звукового сигнала определили скорость звука в воде. При температуре 8 °С она оказалась равной примерно 1440 м/с.


На границе между двумя разными средами часть звуковой волны отражается, а часть проходит дальше. При переходе звука из воздуха в воду 99,9 % звуковой энергии отражается назад, однако давление в прошедшей в воду звуковой волне оказывается почти в 2 раза больше. Слуховой аппарат рыб реагирует именно на это. Поэтому, например, крики и шумы над поверхностью воды являются верным способом распугать морских обитателей. Человека же, оказавшегося под водой, эти крики не оглушат: при погружении в воду в его ушах останутся воздушные "пробки", которые и спасут его от звуковой перегрузки.

При переходе звука из воды в воздух снова отражается 99,9 % энергии. Но если при переходе из воздуха в воду звуковое давление увеличивалось, то теперь оно, наоборот, резко уменьшается. Именно по этой причине, например, не доходит до человека в воздухе звук, возникающий под водой при ударе одним камнем о другой.

Такое поведение звука на границе между водой и воздухом дало основание нашим предкам считать подводный мир "миром молчания". Отсюда же и выражение: "Нем как рыба". Однако еще Леонардо да Винчи предлагал слушать подводные звуки, приложив ухо к веслу, опущенному в воду. Воспользовавшись таким способом, можно убедиться, что рыбы на самом деле довольно болтливы.

Звук в твердых телах . Скорость звука в твердых телах больше, чем в жидкостях и газах. Если вы приложите ухо к рельсу, то после удара по другому концу рельса вы услышите два звука. Один из них достигнет вашего уха по рельсу, другой - по воздуху.

Хорошей проводимостью звука обладает земля. Поэтому в старые времена при осаде в крепостных стенах помещали "слухачей", которые по звуку, передаваемому землей, могли определить, ведет ли враг подкоп к стенам или нет. Прикладывая ухо к земле, также следили за приближением вражеской конницы.

Твердые тела хорошо проводят звук. Благодаря этому люди, потерявшие слух, иной раз способны танцевать под музыку, которая доходит до их слуховых нервов не через воздух и наружное ухо, а через пол и кости.

1. Почему во время грозы мы сначала видим молнию и лишь потом слышим гром? 2. От чего зависит скорость звука в газах? 3. Почему человек, стоящий на берегу реки, не слышит звуков, возникающих под водой? 4. Почему "слухачами", которые в древние времена следили за земляными работами противника, часто были слепые люди?

Экспериментальное задание . Положив на один конец доски (или длинной деревянной линейки) наручные часы, приложите ухо к другому ее концу. Что вы слышите? Объясните явление.

С.В. Громов, Н.А. Родина, Физика 8 класс

Отослано читателями из интернет-сайтов

Планирование физики, планы конспектов уроков физики, школьная программа, учебники и книги по физике 8 класс, курсы и задание по физике для 8 класса

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Мы знаем, что звук распросраняется по воздуху. Именно потому мы и можем слышать. В вакууме никаких звуков существовать не может. Но если звук передается по воздуху, вследствие взаимодействия его частиц, не будет ли он передаваться и другими веществами? Будет.

Распространение и скорость звука в разных средах

Звук передается не только воздухом. Наверное, все знают, что если приложить ухо к стене, то можно услышать разговоры в соседней комнате. В данном случае звук передается стеною. Звуки распространяются и в воде, и в других средах. Более того, распространение звука в различных средах происходит по-разному. Скорость звука различается в зависимости от вещества.

Любопытно, что скорость распространения звука в воде почти в четыре раза выше, чем в воздухе. То есть, рыбы слышат «быстрее», чем мы. В металлах и стекле звук распространяется еще быстрее. Это происходит потому, что звук это колебания среды, и звуковые волны передаются быстрее в средах с лучшей проводимостью.

Плотность и проводимость воды больше, чем у воздуха, но меньше, чем у металла. Соответственно, и звук передается по-разному. При переходе из одной среды в другую скорость звука меняется.

Длина звуковой волны также меняется при ее переходе из одной среды в другую. Прежней остается лишь ее частота. Но именно поэтому мы и можем различить, кто конкретно говорит даже сквозь стены.

Так как звук это колебания , то все законы и формулы для колебаний и волн хорошо применимы к звуковым колебаниям . При расчете скорости звука в воздухе следует учитывать и то, что эта скорость зависит от температуры воздуха. При увеличении температуры скорость распространения звука возрастает. При нормальных условиях скорость звукав воздухе составляет 340 344 м/с.

Звуковые волны

Звуковые волны, как известно из физики, распространяются в упругих средах. Именно поэтому звуки хорошо передаются землей. Приложив ухо к земле, можно издалека услышать звук шагов, топот копыт и так далее.

В детстве все наверняка развлекались, прикладывая ухо к рельсам. Стук колес поезда передается по рельсам на несколько километров. Для создания обратного эффекта звукопоглощения, используют мягкие и пористые материалы.

Например, чтобы защитить от посторонних звуков какое-либо помещение, либо, наоборот, чтобы не допустить выхода звуков из комнаты наружу, помещение обрабатывают, звукоизолируют. Стены, пол и потолок обивают специальными материалами на основе вспененных полимеров. В такой обивке очень быстро затихают все звуки.