Дать определение алгоритму. Свойства алгоритма. Понятность — алгоритм должен состоять из команд, "понятных" исполнителю (входящих в систему команд исполнителя). Зачем нужны алгоритмы

Каждый алгоритм имеет дело с данными – входными, промежуточными и выходными.

Конечность. Понимается двояко: во-первых, алгоритм состоит из отдельных элементарных шагов, или действий, причем множество различных шагов, из которых составлен алгоритм, конечно. Во-вторых, алгоритм должен заканчиваться за конечное число шагов. Если строится бесконечный, сходящийся к искомому решению процесс, то он обрывается на некотором шаге и полученное значение принимается за приближенное решение рассматриваемой задачи. Точность приближения зависит от числа шагов.

Элементарность (понятность). Каждый шаг алгоритма должен быть простым, чтобы устройство, выполняющее операции, могло выполнить его одним действием.

Дискретность. Процесс решения задачи представляется конечной последовательностью отдельных шагов, и каждый шаг алгоритма выполняется за конечное (не обязательно единичное) время.

Детерминированность (определенность). Каждый шаг алгоритма должен быть однозначно и недвусмысленно определен и не должен допускать произвольной трактовки. После каждого шага либо указывается, какой шаг делать дальше, либо дается команда остановки, после чего работа алгоритма считается законченной.

Результативность. Алгоритм имеет некоторое число входных величин – аргументов. Цель выполнения алгоритма состоит в получении конкретного результата, имеющего вполне определенное отношение к исходным данным. Алгоритм должен останавливаться после конечного числа шагов, зависящего от данных, с указанием того, что считать результатом. Если решение не может быть найдено, то должно быть указано, что в этом случае считать результатом.

Массовость. Алгоритм решения задачи разрабатывается в общем виде, т.е. он должен быть применим для некоторого класса задач, различающихся лишь исходными данными. При этом исходные данные могут выбираться из некоторой области, которая называется областью применимости алгоритма.

Эффективность. Одну и ту же задачу можно решить по-разному и соответственно за разное время и с различными затратами памяти. Желательно, чтобы алгоритм состоял из минимального числа шагов и при этом решение удовлетворяло бы условию точности и требовало минимальных затрат других ресурсов.

Точное математическое определение алгоритма затрудняется тем, что интерпретация предусмотренных предписаний не должна зависеть от выполняющего их субъекта. В зависимости от своего интеллектуального уровня он может либо вовсе не понять, что имеется в виду в инструкции, либо, наоборот, интерпретировать ее непредусмотренным образом.

Можно обойти проблему интерпретации правил, если наряду с формулировками предписаний описать конструкцию и принцип действия интерпретирующего устройства. Это позволяет избежать неопределенности и неоднозначности в понимании одних и тех же инструкций. Для этого необходимо задать язык, на котором описывается множество правил поведения, либо последовательность действий, а также само устройство, которое может интерпретировать предложения, сделанные на этом языке, и выполнять шаг за шагом каждый точно определенный процесс. Оказывается, что такое устройство (машину) можно выполнить в виде, который остается постоянным независимо от сложности рассматриваемой процедуры.

В настоящее время можно выделить три основных типа универсальных алгоритмических моделей. Они различаются исходными посылками относительно определения понятия алгоритма.

Первый тип связывает понятие алгоритма с наиболее традиционными понятиями математики – вычислениями и числовыми функциями. Второй тип основан на представлении об алгоритме как о некотором детерминированном устройстве, способном выполнять в каждый отдельный момент лишь весьма примитивные операции. Такое представление обеспечивает однозначность алгоритма и элементарность его шагов. Кроме того, такое представление соответствует идеологии построения компьютеров. Основной теоретической моделью этого типа, созданной в 1930-х гг. английским математиком Аланом Тьюрингом, является машина Тьюринга.

Третий тип – это преобразования слов в произвольных алфавитах, в которых элементарными операциями являются подстановки, т.е. замены части слова (под словом понимается последовательность символов алфавита) другим словом. Преимущества этого типа моделей состоят в его максимальной абстрактности и возможности применить понятие алгоритма к объектам произвольной (необязательно числовой) природы. Примеры моделей третьего типа – канонические системы американского математика Эмиля Л. Поста и нормальные алгоритмы, введенные советским математиком А. А. Марковым.

Модели второго и третьего типа довольно близки и отличаются в основном эвристическими акцентами, поэтому не случайно говорят о машине Поста, хотя сам Пост об этом не говорил.

Запись алгоритма на некотором языке представляет собой программу. Если программа написана на специальном алгоритмическом языке (например, на ПАСКАЛе, БЕЙСИКе или каком-нибудь другом), то говорят об исходной программе . Программа, написанная на языке, который непосредственно понимает компьютер (как правило, это двоичные коды), называется машинной, или двоичной.

Любой способ записи алгоритма подразумевает, что всякий описываемый с его помощью предмет задается как конкретный представитель часто бесконечного класса объектов, которые можно описывать данным способом.

Средства, используемые для записи алгоритмов, в значительной мере определяются тем, кто будет исполнителем.

Если исполнителем будет человек, запись может быть не полностью формализована, на первое место выдвигаются понятность и наглядность. В данном случае для записи могут быть использованы схемы алгоритмов или словесная запись.

Для записи алгоритмов, предназначенных для исполнителей-автоматов, необходима формализация, поэтому в таких случаях применяют формальные специальные языки. Преимущество формального способа записи состоит в том, что он дает возможность изучать алгоритмы как математические объекты; при этом формальное описание алгоритма служит основой, позволяющей интеллектуально охватить этот алгоритм.

Для записи алгоритмов используют самые разнообразные средства. Выбор средства определяется типом исполняемого алгоритма. Выделяют следующие основные способы записи алгоритмов:

вербальный – алгоритм описывается на человеческом языке;

символьный – алгоритм описывается с помощью набора символов;

графический – алгоритм описывается с помощью набора графических изображений.

Общепринятыми способами записи алгоритма являются графическая запись с помощью схем алгоритмов (блок-схем) и символьная запись с помощью какого-либо алгоритмического языка.

Для описания алгоритма с помощью схем изображают связанную последовательность геометрических фигур, каждая из которых подразумевает выполнение определенного действия алгоритма. Порядок выполнения действий указывается стрелками.

В схемах алгоритмов используют следующие типы графических обозначений.

Начало и конец алгоритма обозначают с помощью одноименных символов (рис. 21.1).

Рис. 21.1.

Шаг алгоритма, связанный с присвоением нового значения некоторой переменной, преобразованием некоторого значения с целью получения другого значения, изображается символом "процесс" (рис. 21.2).

Рис. 21.2.

Выбор направления выполнения алгоритма в зависимости от некоторых переменных условий изображается символом "решение" (рис. 21.3).

Рис. 21.3.

Здесь Р означает предикат (условное выражение, условие). Если условие выполнено (предикат принимает значение ИСТИНА), то выполняется переход к одному шагу алгоритма, а если не выполнено, то к другому.

Имеются примитивы для операций ввода и вывода данных, а также другие графические символы. В настоящий момент они определены стандартом ГОСТ 19.701–90 (ИСО 5807–85) "Единая система программной документации. Схемы алгоритмов, программ данных и систем. Условные обозначения и правила выполнения". Всего сборник ЕСПД содержит 28 документов.

По схеме алгоритма легко составить исходную программу на алгоритмическом языке.

В зависимости от последовательности выполнения действий в алгоритме выделяют алгоритмы линейной, разветвленной и циклической структуры.

В алгоритмах линейной структуры действия выполняются последовательно одно за другим.

В алгоритмах разветвленной структуры в зависимости от выполнения или невыполнения какого-либо условия производятся различные последовательности действий. Каждая такая последовательность действий называется ветвью алгоритма.

В алгоритмах циклической структуры в зависимости от выполнения или невыполнения какого-либо условия выполняется повторяющаяся последовательность действий, называющаяся телом цикла. Вложенным называется цикл, находящийся внутри тела другого цикла. Итерационным называется цикл, число повторений которого не задается, а определяется в ходе выполнения цикла.

В этом случае одно повторение цикла называется итерацией.

В информатике план действий называют алгоритмом .
Алгоритм состоит из отдельных шагов – команд . Ни одну из них нельзя пропустить, чаще всего никакие команды нельзя поменять местами.
Исполнитель – человек, животное или машина, способные понимать и выполнять некоторые команды.
Среда исполнителя – предметы, которые окружают исполнителя и с которыми он работает.
Список Команд Исполнителя (СКИ) – набор команд, понятных исполнителю. Исполнитель может выполнить только те команды, которые входят в его СКИ.

Для решения большинства задач недостаточно отдать одну команду исполнителю, надо составить для него алгоритм – план действий, состоящий из команд, которые ему понятны (входят в его СКИ).
Алгоритм – точно определенный план действий исполнителя, направленный на решение какой-то задачи. В алгоритм можно включать только те команды, которые есть в СКИ.

Какие бывают алгоритмы

Линейный алгоритм
В линейном алгоритме команды выполняются последовательно, одна за другой. Примером линейного алгоритма может служить алгоритм заварки чая.

Разветвляющийся алгоритм

В разветвляющемся алгоритме порядок следования команд может быть разный в зависимости от того, какова окружающая обстановка. Примером разветвляющегося алгоритма может служить алгоритм перехода улицы.

Циклический алгоритм
В циклическом алгоритме некоторые действия повторяются несколько раз (в информатике говорят, что выполняется цикл). Существуют два вида циклических алгоритмов. В одном из них мы знаем заранее, сколько раз надо сделать эти действия, в другом мы должны остановиться лишь тогда, когда выполним работу, то есть наши действия прекращаются при выполнении какого-то условия.
Примером цикла первого типа является наша жизнь в рабочие дни (от понедельника до субботы) – мы выполняем 6 раз почти одни и те же действия.
Пример цикла второго типа – алгоритм распилки бревна: мы не можем заранее сказать, сколько раз нам надо провести пилой от себя и на себя - это зависит от плотности дерева, качества пилы и наших усилий. Однако мы точно знаем, что надо закончить работу, когда очередное отпиленное полено упадет на землю.

Способы записи алгоритмов

Выделяют три наиболее распространенные на практике способа записи алгоритмов:

  • словесный (запись на естественном языке);
  • графический (запись с использованием графических символов);
  • программный (тексты на языках программирования).

Словесный способ записи алгоритмов

Словесный способ – способ записи алгоритма на естественном языке . Данный способ очень удобен, если нужно приближенно описать суть алгоритма. Однако при словесном описании не всегда удается ясно и точно выразить логику действий.

В качестве примера словесного способа записи алгоритма рассмотрим алгоритм нахождения площади прямоугольника

где S – площадь прямоугольника; а, b – длины его сторон.

Очевидно, что a, b должны быть заданы заранее, иначе задачу решить невозможно.

Словестный способ записи алгоритма выглядит так:

  • Начало алгоритма.
  • Задать численное значение стороны a.
  • Задать численное значение стороны b.
  • Вычислить площадь S прямоугольника по формуле S=a*b.
  • Вывести результат вычислений.
  • Конец алгоритма.

Графический способ описания алгоритмов

Для более наглядного представления алгоритма используется графический способ. Существует несколько способов графического описания алгоритмов. Наиболее широко используемым на практике графическим описанием алгоритмов является использование блок-схем. Несомненное достоинство блок схем – наглядность и простота записи алгоритма.

Каждому действию алгоритма соответствует геометрическая фигура (блочный символ). Перечень наиболее часто употребляемых символов приведен в таблице ниже.

Так как в линейном алгоритме команды выполняются последовательно, то блок-схема будет иметь вид:

Так как в разветвляющемся алгоритме порядок следования команд может быть разный в зависимости от того, какова окружающая обстановка, то блок-схема примет вид:

В циклическом алгоритме некоторые действия повторяются несколько раз и для него блок-схема примет вид:

Программный способ записи алгоритмов

Для того, чтобы алгоритм был понятен роботу, компьютеру или другой машине, недостаточно только написать команды, надо еще и оформить алгоритм в таком виде, в котором его понимает машина (написать программу), т.е. записать его с использованием команд из СКИ, соблюдая правила оформления.

Правила оформления программы:

  1. любой алгоритм имеет название;
  2. алгоритм начинается с открывающей фигурной скобки “{“ и заканчивается закрывающей фигурной скобкой “}”; команды, расположенные между этими скобками, называются телом алгоритма;
  3. в алгоритм могут входить только те команды, которые есть в СКИ исполнителя;
  4. каждая команда заканчивается знаком “;”, который обозначает конец команды;
  5. для того, чтобы нам было легче разбираться в программах, используют комментарии - текстовые пояснения, которые начинаются знаками “/*” и заканчиваются знаками “*/”; исполнитель не обращает внимания на комментарии в алгоритме.

Практические задания:

  1. Составить блок-схему для нахождения периметра квадрата.
  2. Составить блок схему для заваривания чая.
  3. Составить блок-схему для перехода перекрестка со светофором.

Использован материал из книг:

  1. "Современные информационные технологии", авторы преподаватели центра "Турбо"
  2. "Алгоритмы и исполнители", автор Поляков К.

Да, хорошая алгоритмическая подготовка важна для программиста. И нет, хорошая - это вовсе не заучивание алгоритмов из списка “Самых Важных Алгоритмов, Которые Должен Знать Каждый”. На мой взгляд хорошая алгоритмическая подготовка должна стремиться дать программисту следующие три умения.

Во-первых, это умение решать непонятные задачи. В нечетких формулировках жизненных задач видеть возможные строгие трактовки. По строгим трактовкам накидывать варианты решения. Всесторонне анализировать разные варианты и выбирать самый подходящий.

Очевидно, для этого недостаточно просто знать алгоритмы. Нужно уметь “видеть их”, распознавать возможности их применения.

Во-вторых, алгоритмическая подготовка должна прививать привычку анализировать эффективность каждого вашего решения. Не пропускать в критических местах квадратичные или экспоненциальные алгоритмы, и не закладывать в архитектуру программы идеи, которые потом невозможно будет реализовать достаточно эффективно.

В-третьих, алгоритмическая подготовка должна помогать умело пользоваться готовыми инструментами. Базы данных - это сплошные структуры данных и алгоритмы. Причем на концептуальном уровне довольно простые и понятные - деревья поиска, хэштаблицы, SS-Table, …

Например, зная, что индекс в БД - это просто дерево поиска, несложно понять, какие запросы могут быть выполнены быстро, а какие обречены на full-scan.
Зная, как на каких алгоритмах работает полнотекстовый поиск в Lucene, можно предсказать, какие запросы к Elastic будут давать релевантные ответы, а какие - нет, и даже как это можно доработать.

Если подводить итог:

  • Кроме самих алгоритмов - учитесь их распознавать в задачах реального мира.
  • Прививайте себе привычку анализировать эффективность кода, который вы пишите.
  • Изучайте алгоритмы под капотом у инструментов, которыми вы пользуетесь - это пригодится при их эксплуатации.

Для составления программы, предназначенной для решения на ЭВМ какой-либо задачи, требуется составление алгоритма ее решения.

Алгоритм - это точное предписание, которое определяет процесс, ведущий от исходных данных к требуемому конечному результату. Алгоритмами, например, являются правила сложения, умножения, решения алгебраических уравнений, умножения матриц и т.п. Слово алгоритм происходит отalgoritmi , являющегося латинской транслитерацией арабского имени хорезмийского математика IX века аль-Хорезми . Благодаря латинскому переводу трактатааль-Хорезми европейцы в XII веке познакомились с позиционной системой счисления, и в средневековой Европе алгоритмом называлась десятичная позиционная система счисления и правила счета в ней.

Применительно к ЭВМ алгоритм определяет вычислительный процесс, начинающийся с обработки некоторой совокупности возможных исходных данных и направленный на получение определенных этими исходными данными результатов. Термин вычислительный процесс распространяется и на обработку других видов информации, например, символьной, графической или звуковой.

Если вычислительный процесс заканчивается получением результатов, то говорят, что соответствующий алгоритм применим к рассматриваемой совокупности исходных данных. В противном случае говорят, что алгоритм неприменим к совокупности исходных данных. Любой применимый алгоритм обладает следующими основными свойствами :

    результативностью;

    определенностью;

    массовостью.

Результативность означает возможность получения результата после выполнения конечного количества операций.

Определенность состоит в совпадении получаемых результатов независимо от пользователя и применяемых технических средств.

Массовость заключается в возможности применения алгоритма к целому классу однотипных задач, различающихся конкретными значениями исходных данных.

Для задания алгоритма необходимо описать следующие его элементы:

    набор объектов, составляющих совокупность возможных исходных данных, промежуточных и конечных результатов;

    правило начала;

    правило непосредственной переработки информации (описание последовательности действий);

    правило окончания;

    правило извлечения результатов.

Алгоритм всегда рассчитан на конкретного исполнителя. В нашем случае таким исполнителем является ЭВМ. Для обеспечения возможности реализации на ЭВМ алгоритм должен быть описан на языке, понятном компьютеру, то есть на языке программирования.

Таким образом, можно дать следующее определение программы.

Программа для ЭВМ представляет собой описание алгоритма и данных на некотором языке программирования, предназначенное для последующего автоматического выполнения.

Способы описания алгоритмов

К основным способам описания алгоритмов можно отнести следующие:

    словесно-формульный;

    структурный или блок-схемный;

    с помощью граф-схем;

    с помощью сетей Петри.

Перед составлением программ чаще всего используются словесно-формульный и блок-схемный способы. Иногда перед составлением программ на низкоуровневых языках программирования типа языка Ассемблера алгоритм программы записывают, пользуясь конструкциями некоторого высокоуровнего языка программирования. Удобно использовать программное описание алгоритмов функционирования сложных программных систем. Так, для описания принципов функционирования ОС использовался Алголоподобный высокоуровневый язык программирования.

При словесно-формульном способе алгоритм записывается в виде текста с формулами по пунктам, определяющим последовательность действий.

Пусть, например, необходимо найти значение следующего выражения:

у = 2а – (х+6).

Словесно-формульным способом алгоритм решения этой задачи может быть записан в следующем виде:

1. Ввести значения а их.

2. Сложить х и 6.

3. Умножить a на 2.

4. Вычесть из сумму (х+6).

5. Вывести у как результат вычисления выражения.

При блок-схемном описании алгоритм изображается геометрическими фигурами (блоками), связанными по управлению линиями (направлениями потока) со стрелками. В блоках записывается последовательность действий.

Данный способ по сравнению с другими способами записи алгоритма имеет ряд преимуществ. Он наиболее нагляден: каждая операция вычислительного процесса изображается отдельной геометрической фигурой. Кроме того, графическое изображение алгоритма наглядно показывает разветвления путей решения задачи в зависимости от различных условий, повторение отдельных этапов вычислительного процесса и Другие детали.

Оформление программ должно соответствовать определенным требованиям. В настоящее время действует единая система программной документации (ЕСПД), которая устанавливает правила разработки, оформления программ и программной документации. В ЕСПД определены и правила оформления блок-схем алгоритмов (ГОСТ 10.002-80 ЕСПД, ГОСТ 10.003-80 ЕСПД).

Операции обработки данных и носители информации изображаются на схеме соответствующими блоками. Большая часть блоков по построению условно вписана в прямоугольник со сторонамиа и b. Минимальное значениеа = 10 мм , увеличениеа производится на число, кратное5 мм . Размерb=1,5a . Для от дельных блоков допускается соотношение междуа и b, равное 1:2. В пределах одной схемы рекомендуется изображать блоки одинаковых размеров. Все блоки нумеруются. Виды и назначение основных блоков приведены в табл. 1.

Таблица 1. Условные обозначения блоков схем алгоритмов

Наименование

Обозначение

Функции

Выполнение операции или группы операций, в результате которых изменяется значение, форма представления или расположение данных.

Ввод-вывод

Преобразование данных в форму, пригодную для обработки (ввод) или отображения результатов обработки (вывод).

Понятность - алгоритм должен состоять из команд, "понятных" исполнителю (входящих в систему команд исполнителя).

Дискpетность (прерывность, раздельность) - алгоpитм должен пpедставлять пpоцесс pешения задачи как последовательное выполнение пpостых (или pанее опpеделенных) шагов.

Опpеделенность - т.е. каждое пpавило алгоpитма должно быть четким, однозначным и не оставлять места для пpоизвола. Благодаpя этому свойству выполнение алгоpитма носит формальный хаpактеp и не тpебует никаких дополнительных указаний или сведений о pешаемой задаче.

Pезультативность (или конечность)- алгоpитм должен пpиводить к pешению задачи (или к ответу, что решения нет) за конечное число шагов.

Массовость - алгоpитм pешения задачи pазpабатывается в общем виде, т.е. он должен быть пpименим для некотоpого класса задач, pазличающихся лишь исходными данными. Пpи этом исходные данные могут выбиpаться из некотоpой области, котоpая называется областью пpименимости алгоpитма.

Главная особенность любого алгоритма - формальное исполнение, позволяющее выполнять заданные действия (команды) не только человеку, но и техническим устройствам (исполнителям). Таким образом, исполнителями алгоритмов могут быть, например, человек, компьютер, принтер, робот-манипулятор, станок с числовым программным управлением, живая клетка, дрессированное животное, компьютерная программа, компьютерный вирус, "черепашка" в Логорайтере или Логомирах (геометрический исполнитель) и т.д.

Исполнитель алгоритма - это устройство управления, соединенное с набором инструментов. Устройство управления понимает алгоритмы и организует их выполнение, командуя соответствующими инструментами. А инструменты производят действия, выполняя команды управляющего устройства. Прежде чем составлять алгоритм решения задачи, надо узнать, какие действия предполагаемый исполнитель может выполнить.

Эти действия называются допустимыми действиями исполнителя. Только их и можно использовать.

Исполнитель вычислительных алгоритмов называется вычислителем. Вычислитель может иметь дело с числами и переменными, обозначающими числа. Таким образом, алгоритм - это организованная последовательность действий, допустимых для некоторого исполнителя. Один и тот же исполнитель может быть сымитирован на ЭВМ многими способами.

Сложность алгоритма

Сложность алгоритма позволяет оценить, насколько быстро растет трудоёмкость алгоритма с увеличением объема входных данных. Под трудоемкостью понимается количество элементарных операций, которые необходимо выполнить для решения задачи с помощью данного алгоритма. Обычно оценка сложности алгоритма представляется в виде O(f(N)), где O – функция сложности, а N – число обрабатываемых наблюдений или примеров. Наименее затратными являются алгоритмы, для которых функция сложности имеет вид f(N)=C и f(N)=C*N, где С – константа. В первом случае вычислительные затраты не зависят от количества обрабатываемых данных, а во втором случае – линейно возрастают. Самыми затратными являются алгоритмы, сложность которых имеет степенную и факториальную зависимости от числа обрабатываемых наблюдений.



СОРТИРОВКА

Сортировка представляет собой процесс упорядочения множества подобных информационных объектов в порядке возрастания или убывания их значений. Например, список i из n элементов будет отсортирован в порядке возрастания значений элементов, если i <= i <= ... <= i.

Имеется два вида алгоритмов сортировки: сортировка массивов, которые могут находиться как в операционной памяти, так и на диске в виде файла прямого доступа, и сортировка последовательных файлов, находящихся на дисках или магнитных лентах.

Основное отличие между сортировкой массивов и сортировкой последовательных файлов заключается в том, что каждый элемент массива является доступным в любое время. Это значит, что в любое время любой элемент массива может сравниваться с любым другим элементом массива и любые два элемента массива могут обмениваться местами. Напротив, в последовательном файле в каждый момент времени доступен лишь один элемент. Из-за этих отличий методы сортировки существенно отличаются для этих двух видов сортировки.

В общем случае при сортировке данных только часть информации используется в качестве ключа сортировки, который используется в сравнениях. Когда выполняется обмен, передается вся структура данных.

МЕТОДЫ ПОИСКА

Поиск информации в неотсортированном массиве требует проведения последовательного просмотра массива. Просмотр начинается с первого элемента и завершается либо найденным элементом, либо достижением конца массива. Этот метод должен использоваться для неотсортированных данных, но он также может использоваться для отсортированных данных. Если данные отсортированы, то может использоваться двоичный поиск, который выполняется значительно быстрее.