Что такое невесомость с точки зрения физика и космонавта? Интересные факты про невесомость Город в котором бывает состояние невесомости

На прошлых уроках мы с вами разобрали, что такое сила всемирного тяготения и ее частный случай - сила тяжести, которая действует на тела, находящиеся на Земле.

Сила тяжести - сила, действующая на любое материальное тело, находящееся вблизи поверхности Земли или другого астрономического тела. Сила тяжести играет важнейшую роль в нашей жизни, поскольку ее воздействию подвержено все, что нас окружает. Сегодня мы разберем еще одну силу, которая чаще всего связана с силой тяжести. Это сила - вес тела. Тема сегодняшнего урока: «Вес тела. Невесомость»

Под действием силы упругости, которая приложена к верхнему краю тела, это тело, в свою очередь, также деформируется, возникает другая сила упругости, обусловленная деформацией тела. Эта сила приложена к нижнему краю пружины. Кроме того, она равна по модулю силе упругости пружины и направлена вниз. Именно эту силу упругости тела мы и будем называть его весом, то есть вес тела приложен к пружине и направлен вниз.

После того как колебания тела на пружине затухнут, система придет в состояние равновесия, в котором сумма сил, действующих на тело, будет равна нулю. Это значит, что сила тяжести равна по модулю и противоположна по направлению силе упругости пружины (Рис. 2). Последняя равна по модулю и противоположна по направлению весу тела, как мы уже выяснили. Значит, сила тяжести по модулю равна весу тела. Данное соотношение не универсально, но в нашем примере - справедливо.

Рис. 2. Вес и сила тяжести ()

Приведенная формула не означает, что сила тяжести и вес - одно и то же. Эти две силы разные по своей природе. Вес - это сила упругости, приложенная к подвесу со стороны тела, а сила тяжести - это сила, приложенная к телу со стороны Земли.

Рис. 3. Вес и сила тяжести тела на подвесе и на опоре ()

Выясним некоторые особенности веса. Вес - это сила, с которой тело давит на опору или растягивает подвес, из этого следует, что если тело не подвешено или не закреплено на опоре, то его вес равен нулю. Данный вывод кажется противоречивым нашему повседневному опыту. Однако он имеет вполне справедливые физические примеры.

Если пружину с подвешенным к ней телом отпустить и позволить ей свободно падать, то указатель динамометра будет показывать нулевое значение (Рис. 4). Причина этого проста: груз и динамометр движутся с одинаковым ускорением (g) и одинаковой нулевой начальной скоростью (V 0). Нижний конец пружины движется синхронно с грузом, при этом пружина не деформируется и силы упругости в пружине не возникает. Следовательно, не возникает и встречной силы упругости, которая является весом тела, то есть тело не обладает весом, или является невесомым.

Рис. 4. Свободное падение пружины с подвешенным к ней телом ()

Состояние невесомости возникает благодаря тому, что в земных условиях сила тяжести сообщает всем телам одинаковое ускорение, так называемое ускорение свободного падения. Для нашего примера мы можем сказать, что груз и динамометр движутся с одинаковым ускорением. Если на тело действует только сила тяжести или только сила всемирного тяготения, то это тело находится в состоянии невесомости. Важно понимать, что в этом случае исчезает только вес тела, но не сила тяжести, действующая на это тело.

Состояние невесомости - не экзотика, довольно часто многие из вас его испытывали - любой человек, подпрыгивающий или спрыгивающий с какой либо высоты, до момента приземления находится в состоянии невесомости.

Рассмотрим случай, когда динамометр и прикрепленное к его пружине тело движутся вниз с некоторым ускорением, но не совершают при этом свободного падения. Показания динамометра уменьшатся по сравнению с показаниями при неподвижном грузе и пружине, значит, вес тела стал меньше, чем он был в состоянии покоя. В чем причина такого уменьшения? Дадим математическое объяснение, опираясь на второй закон Ньютона.

Рис. 5. Математическое объяснение веса тела ()

На тело действуют две силы: сила тяжести, направленная вниз, и сила упругости пружины, направленная вверх. Эти две силы сообщают телу ускорение. и уравнение движения будет иметь вид:

Выберем ось y (Рис. 5), поскольку все силы направлены вертикально, нам достаточно одной оси. В результате проецирования и переноса слагаемых получим - модуль силы упругости будет равен:

ma = mg - F упр

F упр = mg - ma,

где в левой и правой части уравнения стоят проекции сил, указанных во втором законе Ньютона, на ось y. Согласно определению, вес тела по модулю равен силе упругости пружины, и, подставив ее значение, получим:

P = F упр = mg - ma = m(g - а)

Вес тела равен произведению массы тела на разность ускорений. Из полученной формулы видно, что если модуль ускорения тела меньше модуля ускорения свободного падения, то вес тела меньше силы тяжести, то есть вес тела, движущегося ускоренно, меньше веса покоящегося тела.

Рассмотрим случай, когда тело с грузиком движется ускоренно вверх (Рис. 6).

Стрелка динамометра покажет значение веса тела большее, чем покоящегося груза.

Рис. 6. Тело с грузиком движется ускоренно вверх ()

Тело движется вверх, и его ускорение направлено туда же, следовательно, нам необходимо поменять знак проекции ускорения на ось у.

Из формулы видно, что теперь вес тела больше силы тяжести, то есть больше веса покоящегося тела.

Увеличение веса тела, вызванное его ускоренным движением, называется перегрузкой .

Это справедливо не только для тела, подвешенного на пружине, но и для тела, укрепленного на опоре.

Рассмотрим пример, в котором проявляется изменение тела при его ускоренном движении (Рис. 7).

Автомобиль движется по мосту выпуклой траектории, то есть по криволинейной траектории. Будем считать форму моста дугой окружности. Из кинематики мы знаем, что автомобиль движется с центростремительным ускорением, величина которого равна квадрату скорости, деленной на радиус кривизны моста. В момент нахождения его в наивысшей точке, это ускорение будет направлено вертикально вниз. Согласно второму закону Ньютона это ускорение сообщается автомобилю равнодействующей силой тяжести и силой реакции опоры.

Выберем координатную ось у, направленную вертикально вверх, и запишем это уравнение в проекции на выбранную ось, подставим значения и проведем преобразования:

Рис. 7. Наивысшая точка нахождения автомобиля ()

Вес автомобиля, по третьему закону Ньютона, равен по модулю силе реакции опоры (), при этом мы видим, что вес автомобиля по модулю меньше силы тяжести, то есть меньше веса неподвижного автомобиля.

Ракета при старте с Земли движется вертикально вверх с ускорением а=20 м/с 2 . Каков вес летчика-космонавта, находящегося в кабине ракеты, если его масса m=80 кг?

Совершенно очевидно, что ускорение ракеты направлено вверх и для решения мы должны использовать формулу веса тела для случая с перегрузом (Рис. 8).

Рис. 8. Иллюстрация к задаче

Необходимо отметить, что если неподвижное относительно Земли тело имеет вес 2400 Н, то его масса составляет 240 кг, то есть космонавт ощущает себя в три раза массивнее, чем есть на самом деле.

Мы разобрали понятие веса тела, выяснили основные свойства этой величины и получили формулы, которые позволяют нам рассчитать вес тела, движущегося с ускорением.

Если тело движется вертикально вниз, при этом модуль его ускорения меньше ускорения свободного падения, то вес тела уменьшается по сравнению со значением веса неподвижного тела.

Если тело движется ускоренно вертикально вверх, то его вес возрастает и при этом тело испытывает перегруз.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.

Домашнее задание

  1. Дать определение весу тела.
  2. В чем различие между весом тела и силой тяжести?
  3. Когда возникает состояние невесомости?
  1. Интернет-портал Physics.kgsu.ru ().
  2. Интернет-портал Festival.1september.ru ().
  3. Интернет-портал Terver.ru ().

На вопрос что такое невесомость? при каких условиях возникает? заданный автором Marty_Ray_ka лучший ответ это Невесомость – это состояние тела, когда на него воздействуют только силы тяготения, а внешнее гравитационное поле не вызывает давления одной части системы на другую и их деформации. В состоянии невесомости обмен веществ и кровообращение живого организма несколько изменяются. Возникает невесомость при свободном падении тела и в космических кораблях, когда они двигаются с выключенными двигателями.

Ответ от Phantom [гуру]
когда тело не имеет веса. либо в космосе, либо при свободном падении тело находится в невесомости.


Ответ от Komerrsant [гуру]
Вес - сила с которой тело действует на какую либо опору, значит невесомость, (своими словами) это состояние тела, когда оно не давит на опору. Если инфы не достаточно в ВИКИ посмотри


Ответ от Пользователь удален [гуру]
Невесомость - состояние, когда сила взаимодействия тела с опорой (вес тела) , возникающая в связи с гравитационным притяжением, действием других массовых сил, в частности силы инерции, возникающей при ускоренном движении тела, отсутствует. Иногда можно слышать другое название этого эффекта - микрогравитация - но это название неверно! ! - гравитация (сила притяжения) остается прежней.
Довольно часто исчезновение веса путают с исчезновением гравитационного притяжения. Это не так. В качестве примера можно привести ситуацию на Международной космической станции (МКС). На высоте 350 километров (высота нахождения станции) ускорение свободного падения имеет значение 8,8 м/с², что всего лишь на 10 % меньше, чем на поверхности Земли. Состояние невесомости на МКС возникает за счёт движения по круговой орбите с первой космической скоростью.
На Земле в экспериментальных целях создают кратковременное состояние невесомости (до 40 с) при полётах самолёта по параболической (а на самом деле - баллистической, то есть такой, по которой летел бы самолет под воздействием одной лишь силы земного притяжения; эта траектория является параболой лишь при небольших скоростях движения; для спутника это эллипс, окружность или гипербола) траектории. Состояние невесомости можно ощутить в начальный момент свободного падения тела в атмосфере, когда сопротивление воздуха ещё невелико.
Для понимания сути невесомости можно рассмотреть летящий по балистической траектории самолёт. Такие применяются для тренировки космонавтов в России и США. В кабине пилота на нитке подвешен грузик, который обычно натягивает нитку вниз (если самолет покоится либо движется равномерно и прямолинейно). Когда нить, на которой висит шарик не натянута, имеет место состояние невесомости. Таким образом, пилот должен управлять самолётом так, что бы шарик висел в воздухе, а нить не была натянута. Для достижения этого эффекта самолёт должен иметь постоянное ускорение g, направленное вниз. Таким образом, можно сказать, что самолёт «падает» вместе с шариком, ниткой, пилотом и космонавтами.
[править]
Вес и его восприятие
Невесомость - это состояние тела, когда оно находится под действием только массовых сил. Например, под действием только гравитации. Движение под действием только силы тяжести называют также свободным падением.
Если же на тело помимо массовых сил действуют поверхностные силы, например, реакция опоры, возникает состояние весомости.
Вес тела - это сила, с которой тело действует на опору или подвес.
То, что люди воспринимают как вес, является лишь следствием воздействия на их тела реакции опоры или среды.
Сила, действующая на разные части расположенного на Земле тела, неодинакова. Если условно разделить тело на горизонтальные слои, то можно представить, что на каждый слой, помимо реакции нижерасположенной опоры будет воздействовать ещё и давление от слоёв расположенных выше. Человек ощущает подобную разницу давлений, как вес.
Тело, помещённое в герметично закрытый контейнер, при экспериментах со свободным падением (например, сбрасываемое с высокой башни) испытывает состояние невесомости. Это происходит потому, что ускорение контейнера, заключённого внутри него воздуха, и всех частей самого тела, вызываемое воздействием силы тяжести - одинаково, реакция опоры и градиент давления отсутствует (в случае свободного падения тела вне контейнера это не совсем так, кроме силы тяжести на него действует ещё и реакция внешней среды - сила сопротивления воздуха).

. Это название неверно для околоземного полета. Гравитация (сила притяжения) остаётся прежней. Но при полете на больших расстояниях от небесных тел, когда их гравитационное влияние пренебрежимо мало, действительно возникает микрогравитация. [ ]

Особенности деятельности человека и работы техники в условиях невесомости

В условиях невесомости на борту космического аппарата многие физические процессы (конвекция, горение и т. д.) протекают иначе, чем на Земле. Отсутствие силы тяжести, в частности, требует специальной конструкции таких систем как душ, туалет, системы разогрева пищи, вентиляции и т. д. Во избежание образования застойных зон, где может скапливаться углекислый газ, и для обеспечения равномерного смешивания теплого и холодного воздуха, на МКС, например, установлено большое количество вентиляторов. Прием пищи и питьё, личная гигиена, работа с оборудованием и в целом обычные бытовые действия также имеют свои особенности и требуют от космонавта выработки привычки и нужных навыков.

Влияние невесомости неизбежно учитывается в конструкции жидкостного ракетного двигателя , предназначенного для запуска в невесомости. Жидкие компоненты топлива в баках ведут себя точно так же, как и любая жидкость (образуют жидкие сферы). По этой причине подача жидких компонентов из баков в топливные магистрали может стать невозможной. Для компенсации такого эффекта применяется специальная конструкция баков (с разделителями газовой и жидкой сред), а также - процедура осадки топлива перед запуском двигателя. Такая процедура состоит во включении вспомогательных двигателей корабля на разгон; создаваемое ими небольшое ускорение осаживает жидкое топливо на днище бака, откуда система подачи направляет топливо в магистрали.

Воздействие невесомости на организм человека

При переходе из условий земной гравитации к условиям невесомости (в первую очередь- при выходе космического корабля на орбиту), у большинства космонавтов наблюдается реакция организма, называемая синдромом космической адаптации .

При длительном (более недели) пребывании человека в космосе отсутствие гравитации начинает вызывать в организме определённые изменения, носящие негативный характер.

Первое и самое очевидное последствие невесомости - стремительное атрофирование мышц: мускулатура фактически выключается из деятельности человека, в результате падают все физические характеристики организма. Кроме того, следствием резкого уменьшения активности мышечных тканей является сокращение потребления организмом кислорода, и из-за возникающего избытка гемоглобина может понизиться деятельность костного мозга, синтезирующего его (гемоглобин).

Также есть основания полагать, что ограничение подвижности нарушит фосфорный обмен в костях, что приведёт к снижению их прочности.

Вес и гравитация

Довольно часто исчезновение веса путают с исчезновением гравитационного притяжения. Это не так. В качестве примера можно привести ситуацию на Международной космической станции (МКС). На высоте 350 километров (высота нахождения станции) ускорение свободного падения имеет значение 8,8 / ², что всего лишь на 10 % меньше, чем на поверхности Земли . Состояние невесомости на МКС возникает не из-за «отсутствия гравитации», а за счёт движения по круговой орбите с первой космической скоростью , то есть космонавты как бы постоянно «падают вперед» со скоростью 7,9 км/с.

Невесомость на Земле

На Земле в экспериментальных целях создают кратковременное состояние невесомости (до 40 с) при полётах самолёта по баллистической траектории, то есть такой траектории, по которой летел бы самолет под воздействием одной лишь силы земного притяжения. Эта траектория является параболой при небольших скоростях движения, из-за чего её иногда ошибочно называют "параболической"; в общем случае траектория представляет собой эллипс или гиперболу.

Такие методы применяются для тренировки космонавтов в России и США. В кабине пилота на нитке подвешен шарик, который обычно натягивает нитку вниз (если самолет покоится, либо движется равномерно и прямолинейно). Отсутствие натяжения нити, на которой висит шарик, свидетельствует о невесомости. Таким образом, пилот должен управлять самолётом так, чтобы шарик висел в воздухе, а нить не была натянута. Для достижения этого эффекта самолёт должен иметь постоянное ускорение g, направленное вниз. Другими словами, пилоты создают нулевую перегрузку. Длительно такую перегрузку (до 40 секунд) можно создать, если выполнить специальную фигуру пилотажа «провал в воздухе». Пилоты резко начинают набор высоты, выходя на "параболическую" траекторию, которая заканчивается таким же резким сбросом высоты. Внутри фюзеляжа имеется камера, в которой тренируются будущие космонавты, она имеет специальное мягкое покрытие на стенах, чтобы избежать травм как в моменты невесомости, так и в моменты перегрузок.

Подобное чувство невесомости человек испытывает при полетах рейсами гражданской авиации во время посадки. Однако в целях безопасности полета и из-за большой нагрузки на конструкцию самолета, гражданская авиация сбрасывает высоту совершая несколько протяженных спиральных витков (с высоты полета в 11 км до высоты захода на посадку порядка 1-2 км). То есть спуск производится в несколько заходов, во время которых пассажир на несколько секунд ощущает, что его отрывает от кресла вверх. Это же чувство знакомо и автомобилистам, знакомыми с трассами, проходящими по крутым холмам, когда машина начинает съезжать с верхушки вниз.

Утверждения, что самолет для создания кратковременной невесомости выполняет фигуры высшего пилотажа типа «петли Нестерова» - не более чем миф. Тренировки выполняются в слегка модифицированных серийных машинах пассажирского или грузового класса, для которых фигуры высшего пилотажа и подобные режимы полета являются закритическими и могут привести к разрушению машины в воздухе или быстрому усталостному разрушению несущих конструкций.

Состояние невесомости можно ощутить в начальный момент свободного падения тела в атмосфере , когда сопротивление воздуха ещё невелико.

Напишите отзыв о статье "Невесомость"

Ссылки

  • Астрономический словарь Санько Н. Ф.
  • Видео телестудии Роскосмоса

Примечания

Отрывок, характеризующий Невесомость

Но оно не двигалось.
Оно побежало только тогда, когда его вдруг охватил панический страх, произведенный перехватами обозов по Смоленской дороге и Тарутинским сражением. Это же самое известие о Тарутинском сражении, неожиданно на смотру полученное Наполеоном, вызвало в нем желание наказать русских, как говорит Тьер, и он отдал приказание о выступлении, которого требовало все войско.
Убегая из Москвы, люди этого войска захватили с собой все, что было награблено. Наполеон тоже увозил с собой свой собственный tresor [сокровище]. Увидав обоз, загромождавший армию. Наполеон ужаснулся (как говорит Тьер). Но он, с своей опытностью войны, не велел сжечь всо лишние повозки, как он это сделал с повозками маршала, подходя к Москве, но он посмотрел на эти коляски и кареты, в которых ехали солдаты, и сказал, что это очень хорошо, что экипажи эти употребятся для провианта, больных и раненых.
Положение всего войска было подобно положению раненого животного, чувствующего свою погибель и не знающего, что оно делает. Изучать искусные маневры Наполеона и его войска и его цели со времени вступления в Москву и до уничтожения этого войска – все равно, что изучать значение предсмертных прыжков и судорог смертельно раненного животного. Очень часто раненое животное, заслышав шорох, бросается на выстрел на охотника, бежит вперед, назад и само ускоряет свой конец. То же самое делал Наполеон под давлением всего его войска. Шорох Тарутинского сражения спугнул зверя, и он бросился вперед на выстрел, добежал до охотника, вернулся назад, опять вперед, опять назад и, наконец, как всякий зверь, побежал назад, по самому невыгодному, опасному пути, но по знакомому, старому следу.
Наполеон, представляющийся нам руководителем всего этого движения (как диким представлялась фигура, вырезанная на носу корабля, силою, руководящею корабль), Наполеон во все это время своей деятельности был подобен ребенку, который, держась за тесемочки, привязанные внутри кареты, воображает, что он правит.

6 го октября, рано утром, Пьер вышел из балагана и, вернувшись назад, остановился у двери, играя с длинной, на коротких кривых ножках, лиловой собачонкой, вертевшейся около него. Собачонка эта жила у них в балагане, ночуя с Каратаевым, но иногда ходила куда то в город и опять возвращалась. Она, вероятно, никогда никому не принадлежала, и теперь она была ничья и не имела никакого названия. Французы звали ее Азор, солдат сказочник звал ее Фемгалкой, Каратаев и другие звали ее Серый, иногда Вислый. Непринадлежание ее никому и отсутствие имени и даже породы, даже определенного цвета, казалось, нисколько не затрудняло лиловую собачонку. Пушной хвост панашем твердо и кругло стоял кверху, кривые ноги служили ей так хорошо, что часто она, как бы пренебрегая употреблением всех четырех ног, поднимала грациозно одну заднюю и очень ловко и скоро бежала на трех лапах. Все для нее было предметом удовольствия. То, взвизгивая от радости, она валялась на спине, то грелась на солнце с задумчивым и значительным видом, то резвилась, играя с щепкой или соломинкой.
Одеяние Пьера теперь состояло из грязной продранной рубашки, единственном остатке его прежнего платья, солдатских порток, завязанных для тепла веревочками на щиколках по совету Каратаева, из кафтана и мужицкой шапки. Пьер очень изменился физически в это время. Он не казался уже толст, хотя и имел все тот же вид крупности и силы, наследственной в их породе. Борода и усы обросли нижнюю часть лица; отросшие, спутанные волосы на голове, наполненные вшами, курчавились теперь шапкою. Выражение глаз было твердое, спокойное и оживленно готовое, такое, какого никогда не имел прежде взгляд Пьера. Прежняя его распущенность, выражавшаяся и во взгляде, заменилась теперь энергической, готовой на деятельность и отпор – подобранностью. Ноги его были босые.
Пьер смотрел то вниз по полю, по которому в нынешнее утро разъездились повозки и верховые, то вдаль за реку, то на собачонку, притворявшуюся, что она не на шутку хочет укусить его, то на свои босые ноги, которые он с удовольствием переставлял в различные положения, пошевеливая грязными, толстыми, большими пальцами. И всякий раз, как он взглядывал на свои босые ноги, на лице его пробегала улыбка оживления и самодовольства. Вид этих босых ног напоминал ему все то, что он пережил и понял за это время, и воспоминание это было ему приятно.
Погода уже несколько дней стояла тихая, ясная, с легкими заморозками по утрам – так называемое бабье лето.
В воздухе, на солнце, было тепло, и тепло это с крепительной свежестью утреннего заморозка, еще чувствовавшегося в воздухе, было особенно приятно.
На всем, и на дальних и на ближних предметах, лежал тот волшебно хрустальный блеск, который бывает только в эту пору осени. Вдалеке виднелись Воробьевы горы, с деревнею, церковью и большим белым домом. И оголенные деревья, и песок, и камни, и крыши домов, и зеленый шпиль церкви, и углы дальнего белого дома – все это неестественно отчетливо, тончайшими линиями вырезалось в прозрачном воздухе. Вблизи виднелись знакомые развалины полуобгорелого барского дома, занимаемого французами, с темно зелеными еще кустами сирени, росшими по ограде. И даже этот разваленный и загаженный дом, отталкивающий своим безобразием в пасмурную погоду, теперь, в ярком, неподвижном блеске, казался чем то успокоительно прекрасным.
Французский капрал, по домашнему расстегнутый, в колпаке, с коротенькой трубкой в зубах, вышел из за угла балагана и, дружески подмигнув, подошел к Пьеру.
– Quel soleil, hein, monsieur Kiril? (так звали Пьера все французы). On dirait le printemps. [Каково солнце, а, господин Кирил? Точно весна.] – И капрал прислонился к двери и предложил Пьеру трубку, несмотря на то, что всегда он ее предлагал и всегда Пьер отказывался.
– Si l"on marchait par un temps comme celui la… [В такую бы погоду в поход идти…] – начал он.
Пьер расспросил его, что слышно о выступлении, и капрал рассказал, что почти все войска выступают и что нынче должен быть приказ и о пленных. В балагане, в котором был Пьер, один из солдат, Соколов, был при смерти болен, и Пьер сказал капралу, что надо распорядиться этим солдатом. Капрал сказал, что Пьер может быть спокоен, что на это есть подвижной и постоянный госпитали, и что о больных будет распоряжение, и что вообще все, что только может случиться, все предвидено начальством.
– Et puis, monsieur Kiril, vous n"avez qu"a dire un mot au capitaine, vous savez. Oh, c"est un… qui n"oublie jamais rien. Dites au capitaine quand il fera sa tournee, il fera tout pour vous… [И потом, господин Кирил, вам стоит сказать слово капитану, вы знаете… Это такой… ничего не забывает. Скажите капитану, когда он будет делать обход; он все для вас сделает…]

Мы привыкли к тому, что все предметы вокруг нас имеют вес. Происходит это потому, что сила гравитации притягивает их к Земле. Даже если мы летим в самолёте или прыгаем с парашютом, вес никуда от нас не девается. Но что же произойдёт, если вес всё же исчезнет, когда это бывает и какие интересные явления наблюдаются в условиях невесомости? Обо всём этом — в данном посте.

Закон всемирного тяготения, открытый ещё Ньютоном, гласит, что все тела, имеющие массу, притягиваются друг к другу. Для тел с маленькой массой такое притяжение практически не заметно, но если тело имеет большую массу, такую, как наша планета Земля (а её масса в килограммах выражается 25-значным числом), то притяжение становится заметным. Поэтому все предметы притягиваются к Земле — если их поднять, они падают вниз, а когда упадут, сила тяжести прижимает их к поверхности. Это и приводит к тому, что всё на Земле имеет вес, даже воздух прижимается к Земле силой тяжести и своим весом давит на всё, что находится на её поверхности.

Когда вес может исчезнуть? Либо тогда, когда сила тяжести вообще не действует на тело, либо тогда, когда она действует, но телу ничто не мешает свободно падать. Хотя с удалением от Земли сила притяжения к ней уменьшается, даже на высоте в сотни и тысячи километров она остаётся ещё большой, поэтому избавиться от силы тяжести непросто. А вот оказаться в состоянии свободного падения вполне возможно.

Например, можно оказаться в состоянии невесомости, если оказаться в самолёте, движущемся по специальной траектории — так же, как тело, которому не мешало бы сопротивление воздуха.

Выглядит всё это так:

Конечно, долго по такой траектории самолёт двигаться не может, т. к. врежется в землю. Поэтому с длительным пребыванием в условиях невесомости сталкиваются только космонавты, живущие на орбитальной станции. И им приходится привыкать к тому, что многие привычные нам явления в условиях невесомости происходят совсем не так, как на Земле.

1) В невесомости можно легко перемещать тяжёлые предметы и перемещаться самому, приложив лишь небольшое усилие. Правда, по этой же причине любые предметы нужно специально закреплять, чтобы они не летали по орбитальной станции, а на время сна космонавты забираются в специальные мешки, прикреплённые к стене.

Для того, чтобы научиться двигаться в невесомости, нужно время, и у новичков это получается не сразу. «Они толкаются со всей силы и ударяются головой, путаются в проводах и прочее, так что это источник бесконечного веселья» — сказал на эту тему один из американских астронавтов.

2) Жидкости в невесомости принимают шарообразную форму. Воду не получится, как мы привыкли на Земле, хранить в открытой посуде, вылить из чайника и налить в чашку, даже вымыть руки не получится привычным для нас способом.

3) Пламя в условиях невесомости очень слабое и со временем затухает. Если в обычных условиях зажечь свечу, она будет гореть ярко, пока не сгорит. Но происходит это потому, что нагретый воздух становится легче и поднимается вверх, освобождая место для свежего воздуха, насыщенного кислородом. В невесомости конвекции воздуха не наблюдается и со временем кислород вокруг пламени выгорает и горение прекращается.

Горение свечи в обычных условиях и в невесомости (справа)

Но постоянный приток кислорода нужен не только для горения, но и для дыхания. Поэтому если космонавт неподвижен (например, спит), то в отсеке должен работать вентилятор, чтобы перемешивать воздух.

4) В невесомости можно получать уникальные материалы, которые трудно или вообще невозможно получить в земных условиях. Например, сверхчистые вещества, новые композиционные материалы, большие правильные кристаллы и даже лекарства. Если бы удалось снизить стоимость доставки грузов на орбиту и обратно, это решило бы многие технологические проблемы.

5) В невесомости на борту орбитальной станции были впервые обнаружены некоторые ранее неизвестные эффекты. Например, образование структур, напоминающих кристаллические, в плазме, или «эффект Джанибекова» — когда вращающийся предмет через определённые промежутки времени внезапно меняет ось вращения на 180 градусов.

Эффект Джанибекова:

6) Невесомость оказывает существенное влияние на человека и живые организмы. Хотя к жизни в невесомости можно приспособиться, сделать это не так просто. Оказавшись в состоянии невесомости впервые, человек теряет ориентацию в пространстве, возникает головокружение, т. к. вестибулярный аппарат перестаёт нормально работать. Другие изменения в организме включают перераспределение жидкости в организме, из-за чего отекает лицо и закладывает нос, из-за пропадания нагрузки на позвоночник увеличивается рост, а при длительном пребывании в невесомости атрофируются мышцы и теряют прочность кости. Чтобы уменьшить негативные изменения, космонавтам приходится регулярно выполнять специальные упражнения.

После возвращения на Землю космонавтам приходится вновь приспосабливаться к прежним условиям не только физически, но и психологически. Они могут, например, по привычке оставить стакан в воздухе, забыв, что он упадёт.

«Физика невесомости». Как работают законы физики в условиях невесомости, рассказывают космонавты на МКС:

Весу как силе, с которой любое тело действует на поверхность, опору либо подвес. Возникает вес вследствие гравитационного притяжения Земли. Численно вес равен силе тяжести, но последняя приложена к центру масс тела, вес же приложен к опоре.

Невесомость - нулевой вес, может возникать, если отсутствует сила тяготения, то есть тело достаточно от массивных объектов, которые могут притягивать его.

Международная Космическая Станция находится на расстоянии 350 км от Земли. На таком удалении ускорение свободного падения (g) составляет 8,8 м/с2, что всего на 10% меньше, чем на поверхности планеты.

На практике редко встретишь - гравитационное воздействие существует всегда. На космонавтов, находящихся на МКС, по-прежнему действует Земля, однако невесомость там присутствует.

Другой случай невесомости возникает, если сила тяжести компенсирована другими силами. Например, МКС подвержена силе тяжести, незначительно уменьшенной за счет расстояния, но также станция движется по круговой орбите с первой космической скоростью и центробежная сила компенсирует тяготение.

Невесомость на Земле

Явление невесомости возможно и на Земле. Под воздействием ускорения вес тела может уменьшаться, и даже становится отрицательным. Классический пример, который приводят физики - падающий лифт.

Если лифт движется вниз с ускорением, то давление на пол лифта, а, следовательно, и вес, будет уменьшатся. Причем если ускорение равно ускорению свободного падения, то есть лифт падает, вес тел станет нулевым.

Отрицательный вес наблюдается, если ускорение движения лифта превысит ускорение свободного падения - тела находящиеся внутри «прилипнут» к потолку кабины.

Этот эффект широко применяется для симуляции невесомости при подготовке космонавтов. Самолет, оборудованный камерой для тренировок, поднимается на значительную высоту. После чего пикирует вниз по баллистической траектории, по сути, у поверхности земли машина выравнивается. При пикировании с 11 тысяч метров можно получить 40 секунд невесомости, которыми и пользуются для тренировок.

Существует заблуждение, что подобные выполняют сложные фигуры, наподобие «петли Нестерова», для получения невесомости. На самом деле для тренировок используются доработанные серийные пассажирские самолеты, которые неспособны на сложные маневры.

Физическое выражение

Физическая формула веса (P) при ускоренном движении опоры, будь то падающий лиф или пикирующий самолет, имеет следующий вид:

где m – масса тела,
g – ускорение свободного падения,
a – ускорение опоры.

При равенстве g и a, P=0, то есть достигается невесомость.