Антигены, определение, основные свойства. Антигены бактерий. Антигены микроорганизмов Антигенные структуры бактерий вирусов и других микроорганизмов

Антигены бактерий это белки или полисахариды, структурно связанные с бактериальной клеткой или выделяемые ею во внешнюю среду.

Бактерии имеют множество антигенных структур. В основе классификации антигенов бактерий лежит их локализация (жгутиковый, капсульный), биологической функции (гемолизин, энтеротоксин) или метод обнаружения in vitro (предипитиноген, комплементсвязывающий).

Эндоантигены

Антигены органоидов

  • Жгутиковый (имеет белковую природу)
  • Антигены ресничек

Капсульные (чаще всего полисахариды)

  • К (L-, А-, В-)-Аг (у Е. coli)
  • Vi-Аг (у Salmonella)
  • К-Аг (у Klebsiella)
  • М-Аг (у бактерий, имеющих выраженный слизистый слой оболочки).
  • Антиген клеточной стенки О-Аг (комплекс липидов, белков и углеводов)

Эндотоксины

  • Рибосомальный антиген

Экзоантигены

  • Экзотоксины (чаще всего белки)
  • Гемолизины
  • Фибринолизины
  • Ферменты (гиалуронидаза, протеазы)

Биологическое действие антигенов бактерий

Поверхностные эндо-антигены (жгутиковый, капсульный и клеточной стенки) характеризуются большей антигенностью, чем внутриклеточные (цитоплазматических мембран, цитоплазмы, рибосом.

Иммуногенность биополимеров, полученных из бактериальных антигенов, после выделения и очистки значительно ослабевает; одновременно увеличивается их токсичность.

Носителем антиген-специфичности является очень ограниченная область макромолекулы — антиген-детерминанта. У белковых структур она включает 6-12 аминокислотных остатков, у углеводных - около 6 структурных единиц углеводных остатков, у нуклеопротеидов - 4-5 оснований.

Иммуногенная активность (иммуногенность) бактериальных антигенов часто связана со структурами нативной клетки. Компоненты, не являющиеся антигенными, при определенном пространственном расположении или количественном соотношении оказывают адъювантный эффект («встроенная адъювантность» - «built-in adjuvanticity», англ.).

Неспецифические (адъювантные) антигенные воздействия на систему иммунитета могут определять, приведет антигенная стимуляция к развитию иммунологической толерантности или к формированию иммунитета. Растворимый неагрегированный свободно диффундирующий в организме антиген при отсутствии адъюванта в большей степени способен вызвать развитие толерантности, чем иммунологической реакции. Частицы большого размера или агрегированные, легко поглощаемые клетками СМФ (макрофагами), напротив, вызывают иммунологическую перестройку. Эти экспериментальные факты указывают на взаимосвязь понятий толерогенности и иммуногенности.

Антигенность возбудителя болезни - одно из его основных свойств. У разных возбудителей она оказывает неодинаковое влияние на возникновение, течение и исход инфекционного заболевания. Изучение структуры бактерий и продуктов их жизнедеятельности необходимо для создания эффективных слабореактогенных вакцин, в том числе вакцин комбинированных, а также для дальнейшего изучения патогенеза соответствующих заболеваний и усовершенствования их диагностики. Из множества групп бактерий лишь некоторые патогенны для человека (пневмококки, стрептококки, стафилококки, кишечные палочки, сальмонеллы, микобактерии, лептоспиры).

Для характеристики микроорганизмов выделяют родовую, видовую, групповую и типовую специфичность антигенов. Наиболее точная дифференциация осуществляется с использованием моноклональных антител (МКА), распознающих только одну антигенную детерминанту.

Обладая сложным химическим строением, бактериальная клетка представляет целый комплекс антигенов. Антигенными свойствами обладают жгутики, капсула, клеточная стенка, цитоплазматическая мембрана, рибосомы и другие компоненты цитоплазмы, токсины, ферменты. Основными видами бактериальных антигенов являются:

Соматические или О- антигены (у грамотрицательных бактерий специфичность определяется дезоксисахарами полисахаридов ЛПС);

Жгутиковые или Н- антигены (белковые);

Поверхностные или капсульные К- антигены.

Выделяют протективные антигены, обеспечивающие защиту (протекцию) против соответствующих инфекций, что используется для создания вакцин.

Любой микроорганизм (бактерии, грибы, вирусы) представляет собой комплекс антигенов.

По специфичности микробные антигены делятся на:

· перекрестно-реагирующие (гетероантигены ) - это антигены общие с антигенами тканей и органов человека. Они имеются у многих микроорганизмов и рассматриваются как важный фактор вирулентности и пусковой механизм развития аутоиммунных процессов;

· группоспецифические - общие у микроорганизмов одного рода или семейства;

· видоспецифические - общие у разных штаммов одного вида микроорганизмов;

· вариантспецифические (типоспецифические) - встречаются у отдельных штаммов внутри вида микроорганизмов. По наличию тех или иных вариантспецифических антигенов микроорганизмы внутри вида делят на варианты по антигенному строению - серовары.

По локализации антигены бактерий делятся на:

· целлюлярные (связанные с клеткой),

· экстрацеллюлярные (не связанные с клеткой).

Среди целлюлярных антигенов основными являются: соматический - О-антиген (глюцидо-липоидо-полипепдидный комплекс), жгутиковый - Н-антиген (белок), поверхностные - капсульные - К-антиген, Vi-антиген. Экстрацеллюлярные антигены - это продукты, секретируемые бактериями во внешнюю среду, в том числе антигены экзотоксинов, ферментов агрессии и защиты, и другие.

Антигены вирусов

В структуре вирусной частицы различают несколько групп антигенов:

· ядерные (или ко ровые)

· капсидные (или оболочечные)

· суперкапсидные.

На поверхности некоторых вирусных частиц встречаются особые V-антигены- гемагглютинин и фермент нейраминидаза.



Антигены вирусов различаются по происхождению. Часть из них – вирусоспецифические . Информация об их строении картирована в нуклеиновой кислоте вируса. Другие антигены вирусов являются компонентами клетки хозяина (углеводы, липиды), они захватываются во внешнюю оболочку вируса при его рождении путем почкования.

Антигенный состав вириона зависит от строения самой вирусной частицы. Антигенная специфичность простоорганизованных вирусов связана с рибо- и дезоксирибонуклеопротеинами. Эти вещества хорошо растворяются в воде и поэтому обозначаются как S-антигены (от лат. Solution- раствор). У сложноорганизованных вирусов часть антигена связана с нуклеокапсидом, а другая – локализуется во внешней оболочке – суперкапсиде. Антигены многих вирусов отличаются высокой степенью изменчивости. Это связано с постоянным мутационным процессом, который претерпевает генетический аппарат вирусной частицы. Примером могут служить вирус гриппа, вирысы иммунодефицитов человека.

14. Антигены гистосовместимости. Н а цитоплазматических мембранах практически всех клеток макроорганизма обнаруживаются антигены гистосовместимости. Большая часть из них относится к системе главного комплекса гистосовместимости, или МНС (аббр. от англ. Major histocompatibility complex).



По химической природе антигены гистосовместимости представляют собой гликопротеиды, прочно связанные с цитоплазматической мембраной клеток. Их отдельные фрагменты имеют структурную гомологию с молекулами иммуноглобулинов и поэтому относятся к единому суперсемейству.

Различают два основных класса молекул МНС. Условно принято, что МНС I класса индуцирует преимущественно клеточный иммунный ответ, а МНС II класса – гуморальный.

МНС I класса состоит из двух нековалентно связанных полипептидных цепей с разной молекулярной массой: тяжелой альфа-цепи и легкой бета-цепи. Альфа-цепь имеет внеклеточный участок с доменным строением (альфа1,альфа2,альфа3-домены), трансмембранный и цитоплазматический.

Бета-цепь представляет собой бета-2-микроглобулин, который «налипает» на альфа3-домен после экспрессии альфа-цепи на цитоплазматической мембране клетки.

Для МНС I класса характерна высокая скорость биосинтеза – процесс завершается за 6 часов. Этот комплекс экспрессируется на поверхности практически всех клеток, кроме эритроцитов и клеток ворсинчатого трофобласта. Плотность МНС I класса достигает 7000 молекул на клетку, и они покрывают около 1% ее поверхности.

У человека МНС обозначили как HLA (аббр. от англ. Human Leukocyte Antigen), так как он ассоциирован с лейкоцитами.

В настоящее время у человека различают более 200 различных вариантов HLA I класса. Они кодируются генами, картированными в трех основных сублокусах 6-й хромосомы и наследуются и проявляются независимо: HLA-A, HLA-B, HLA-C. Локус А объединяет более 60 вариантов, В-130, а С- около 40.

Основная биологическая роль HLA I класса состоит в том, что они определяют биологическую индивидуальность («биологический паспорт») и являются маркерами «своего» для иммунокомпетентных клеток. Заражение клетки вирусом или мутация изменяют структуру HLA I класса.Содержащая чужеродные или модифицированные пептиды молекула МНС I класса имеет нетипичную для данного организма структуру и является сигналом для активации Т-киллеров (CD8 + - лимфоциты). Клетки, отличающиеся по I классу, уничтожаются как чужеродные.

В структуре и функции МНС II класса есть ряд принципиальных отличий. Во-первых , они имеют более сложное строение. Комплекс образован двумя нековалентно связанными полипептидными цепочками (альфа-цепь и бета-цепь), имеющими сходное доменное строение. Альфа-цепь имеет один глобулярный участок, а бета-цепь – два. Обе цепи как трансмембранные пептиды состоят из трех участков – внеклеточного, трансмембранного и цитоплазматического. Во-вторых , «щель Бьоркмана» в МНС II класса образована одновременно обеими цепочками. Она вмещает больший по размеру олигопептид (12-25 аминокислотных остатков), причем последний полностью «скрывается» внутри этой щели и в таком состоянии не обнаруживается специфическими антителами.В-третьих , МНС II класса включает в себя пептид, захваченный из внеклеточной среды путем эндоцитоза, а не синтезированный самой клеткой. В-четвертых , МНС II класса экспрессируется на поверхности ограниченного числа клеток: дендритных, В-лимфоцитах, Т-хелперах, активированных макрофагах, тучных, эпителиальных и эндотелиальных клетках. Обнаружение МНС II класса на нетипичных клетках расценивается в настоящее время как иммунопатология. Биосинтез МНС II класса протекает в эндоплазматическом ретикулуме, образующийся димерный комплекс затем встраивается в цитоплазматическую мембрану. До включения в него пептида комплекс стабилизируется шапероном (калнексином). МНС II класса экспрессируется на мембране клетки в течение часа после эндоцитоза антигена. У человека антиген гистосовместимости получил название HLA II класса. По имеющимся данным, человеческому организму свойственен чрезвычайно высокий полиморфизм HLA II класса, который в большей степени определяется особенностями строения бета-цепи. В состав комплекса входят продукты трех основных локусов: HLA DR, DQ, DP. При этом локус DR объединяет около 300 аллельных форм, DQ – около 400, а DP – около 500. Биологическая роль МНС II класса чрезвычайно велика. Фактически этот комплекс участвует в индукции приобретенного иммунного ответа. Фрагменты молекулы антигена экспрессируются на цитоплазматической мембране особой группы клеток, которая получила название антигенпрезентирующих клеток (АПК ). Это еще более узкий круг среди клеток, способных синтезировать МНС II класса. Наиболее активной АПК считается дендритная клетка, затем – В-лимфоцит и макрофаг. Структура МНС II класса с включенным в него пептидом в комплексе с ко-факторными молекулами CD-антигенов воспринимается и анализируется Т-хелперами (CD4+-лимфоциты). В случае принятия решения о чужеродности включенного в МНС II класса пептида Т-хелпер начинает синтез соответствующих иммуноцитокинов, и включается механизм специфического иммунного реагирования. В итоге активируется пролиферация и окончательная дифференцировка антигенспецифичных клонов лимфоцитов и формирование иммунной памяти. Помимо описанных выше антигенов гистосовместимости, идентифицирован III класс молекул МНС. Локус, содержащий кодирующие их гены, вклинивается между I и II классом и разделяет их. К МНС III класса относятся некоторые компоненты (С2, С4), белки теплового шока, факторы некроза опухоли и др.

Бактериальные антигены. Стенка (наружная мембрана) бактериальной клетки значительно плотнее, чем мембрана животных клеток. В случае грамотрицательных бактерий в ней содержится ЛПС; некоторые виды бактерий образуют еще и поверхностную полисахаридную капсулу, а другие способны экскретировать полисахариды (например, декстраны). Все это служит источником полисахаридных антигенов микрорганизма. Если бактерии или простейшие подвижны, то антигеном может быть белок жгутиков, а в других случаях (гонококки) – белок пилей, также выходящих на клеточную поверхность. Кроме поверхностных (обычно – протективных) антигенов, в бактериях имеются и глубоко лежащие (например, нуклеопротеины, белки клеточных органелл, некоторые ферменты). Они также вызывают образование антител, но обычно к протективным не относятся, хотя возможны и исключения, когда тот или иной белок является фактором патогенности. Ввиду значительных различий по свойствам между капсульными полисахаридами и ЛПС – с одной стороны – и белковыми антигенами – с другой, удобно рассматривать первую группу антигенов особо.

Классические антигенные белки – это анатоксины (дифтерийный, столбнячный и др.).

Вирусы – чрезвычайно гетерогенная группа возбудителей инфекционных заболеваний. Инфекционные частицы (вирионы) различных вирусов обладают различной степенью сложности, различным размером, различными молекулярными механизмами репликации (в частности, одни из них содержат ДНК, другие – РНК). Особенности вирусных инфекций создают большое разнообразие во взаимоотношениях между возбудителями и иммунной системой.

Все вирусные антигены имеют белковую природу; среди них – гликопротеины (обычно – поверхностные), фосфопротеины, нуклеопротеины. Чаще всего протективными являются поверхностные в вирионе гликопротеины, хотя образуемые в ходе иммунного ответа антитела направлены против многих белков, в том числе и расположенных в нуклеокапсиде, "в глубине" вириона.

Принципиальная, отличительная от других возбудителей особенность репродукции вирусов заключается в том, что не все белки, синтез которых индуцируется в инфицированной клетке, входят затем в состав вириона. Часть из них является вспомогательными, обеспечивающими процесс репродукции. Тем не менее, они также могут попадать во внеклеточную среду и служить иммунизирующим материалом.

У большинства вирусов имеются суперокапсидные – поверхностные оболочечные, белковые и гликопротеидные АГ (например, гемагглютинин и нейраминидаза вируса гриппа), капсидные – оболочечные и нуклеопротеидные (сердцевинные) АГ.

Все вирусные антигены – Т-зависимые.

Протективные антигены. Это совокупность антигенных детерминант (эпитопов), которые вызывают наиболее сильный иммунный ответ, что предохраняет организм от повторной инфекции данным возбудителем. Определение вирусных антигенов в крови и других биологических жидкостях широко используется при диагностике вирусных инфекций. Наиболее иммуногенные, протективные пептиды вирусов используются для создания синтетических вакцин. По строению они вариабельны даже у одного вида вирусов.

Пути проникновения инфекционных антигенов в организм разнообразны:

    через поврежденную и иногда неповрежденную кожу;

    через слизистые оболочки носа, рта, ЖКТ, мочеполовых путей.

Пути распространения антигенов – кровь, лимфа, а также по поверхности слизистых оболочек.

Антигенная структура микроорганизмов очень разнообразна. Антигены некоторых микробов, например сальмонелл, шигелл, эшерихий, изучены хорошо. Об антигенах других микроорганизмов данных пока недостаточно. У микроорганизмов различают общие, или групповые, и специфические, или типовые, антигены.

Групповые антигены являются общими для двух или более видов микробов, входящих в один род, а иногда относящихся и к разным родам. Так, общие групповые антигены имеются у отдельных типов рода сальмонелл; возбудители брюшного тифа имеют общие групповые антигены с возбудителями паратифа А и паратифа В (0—1,12).

Специфические антигены имеются только у данного вида микроба или даже только у определенного типа (варианта) либо подтипа внутри вида. Определение специфических антигенов позволяет дифференцировать микробы внутри рода, вида, подвида и даже типа (подтипа). Так, внутри рода сальмонелл по комбинации антигенов дифференцировано более 2000 типов сальмонелл, а у подвида шигелл Флекснера — 5 серотипов (серовариантов).

По локализации антигенов в микробной клетке различают соматические антигены, связанные с телом микробной клетки, капсульные — поверхностные, или оболочечные антигены и жгутиковые антигены, находящиеся в жгутиках.

Соматические, О-антигены (от нем. ohne Hauch — без дыхания), связаны с телом микробной клетки. У грамотрицательных бактерий О-антиген — сложный комплекс липидополисахаридно-белковой природы. Он высоко токсичен и является эндотоксином этих бактерий. У возбудителей кокковых инфекций, холерных вибрионов, возбудителей бруцеллеза, туберкулеза и некоторых анаэробов из тела микробных клеток выделены полисахаридные антигены, которые обусловливают типовую специфичность бактерий. Как антигены они могут быть активны в чистом виде и в комплексе с липидами.

Жгутиковые, Н-антигены (от нем. Hauch — дыхание), имеют белковую природу и находятся в жгутиках подвижных микробов. Жгутиковые антигены быстро разрушаются при нагревании и под действием фенола. Они хорошо сохраняются в присутствии формалина. Это свойство используют при изготовлении убитых диагностии кумов для реакции агглютинации, когда необходимо сохранить жгутики.

Капсульные, К - антигены, - расположены на поверхности микробной клетки и называются еще поверхностными, или оболочечными. Наиболее детально они изучены у микробов семейства кишечных, у которых различают Vi-, М-, В-, L- и А-антигены.

Важное значение из них имеет Vi-антиген. Впервые он был обнаружен в штаммах бактерий брюшного тифа, обладающих высокой вирулентностью, и получил название антигена вирулентности. При иммунизации человека комплексом О- и Vi- антигенов наблюдается высокая степень защиты против брюшного тифа. Vi-антиген разрушается при 60°С и менее токсичен, чем О-антиген. Он обнаружен и у других кишечных микробов, например у кишечной палочки.

Протективный (от лат. protectio — покровительство, защита), или защитный, антиген образуется сибиреязвенными микробами в организме животных и обнаруживается в различных экссудатах при заболевании сибирской язвой. Протективный антиген является частью экзотоксина, выделяемого микробом сибирской язвы, и способен вызывать выработку иммунитета. В ответ на введение этого антигена образуются комплементсвязывающие антитела. Протективный антиген можно получить при выращивании сибиреязвенного микроба на сложной синтетической среде. Из протективного антигена приготовлена высокоэффективная химическая вакцина против сибирской язвы. Защитные протективные антигены обнаружены также у возбудителей чумы, бруцеллеза, туляремии, коклюша.