Проблемы производства кристаллов в космосе. Выращивание кристаллов в космосе

Если Вы сам деятель науки или просто любознательный человек, и Вы частенько смотрите или читаете последние новости в сфере науки или техники. Именно для Вас мы создали такой раздел, где освещаются последние новости мира в сфере новых научных открытий, достижений, а также в сфере техники. Только самые свежие события и только проверенные источники.


В наше прогрессивное время наука двигается быстрыми темпами, так что не всегда можно уследить за ними. Какие-то старые догмы рушатся, какие-то выдвигаются новые. Человечество не стоит на месте и не должно стоять, а двигателем человечества, являются ученые, научные деятели. И в любой момент может произойти открытие, которое способно не просто поразить умы всего населения земного шара, но и в корне поменять нашу жизнь.


Особая роль в науке выделяется медицине, так как человек, к сожалению не бессмертен, хрупок и очень уязвим к всякого рода заболеваниям. Многим известно, что в средние века люди в среднем жили лет 30, а сейчас 60-80 лет. То есть, как минимум вдвое увеличилась продолжительность жизни. На это повлияло, конечно, совокупность факторов, однако большую роль привнесла именно медицина. И, наверняка 60-80 лет для человека не предел средней жизни. Вполне возможно, что когда-нибудь люди перешагнут через отметку в 100 лет. Ученые со всего мира борются за это.


В сфере и других наук постоянно ведутся разработки. Каждый год ученые со всего мира делаю маленькие открытия, потихоньку продвигая человечество вперед и улучшая нашу жизнь. Исследуется не тронутые человеком места, в первую очередь, конечно на нашей родной планете. Однако и в космосе постоянно происходят работы.


Среди техники особенно рвется вперед робототехника. Ведется создание идеального разумного робота. Когда-то давно роботы – были элементом фантастики и не более. Но уже на данный момент некоторые корпорации имеют в штате сотрудников настоящих роботов, которые выполняют различные функции и помогают оптимизировать труд, экономить ресурсы и выполнять за человека опасные виды деятельности.


Ещё хочется особое внимание уделить электронным вычислительным машинам, которые ещё лет 50 назад занимали огромное количество места, были медленными и требовали для своего ухода целую команду сотрудников. А сейчас такая машина, практически, в каждом доме, её уже называют проще и короче – компьютер. Теперь они не только компактны, но и в разы быстрее своих предшественников, а разобраться в нем может уже каждый желающий. С появлением компьютера человечество открыло новую эру, которую многие называют «технологической» или «информационной».


Вспомнив о компьютере, не стоит забывать и о создании интернета. Это дало тоже огромный результат для человечества. Это неиссякаемый источник информации, который теперь доступен практически каждому человеку. Он связывает людей с разных континентов и молниеносно передает информацию, о таком лет 100 назад невозможно было даже мечтать.


В этом разделе, Вы, безусловно, найдете для себя что-то интересное, увлекательное и познавательное. Возможно, даже когда-нибудь Вы сможете одним из первых узнать об открытии, которое не просто изменит мир, а перевернет Ваше сознание.

Успешно совершившим свою исследовательскую миссию весной 2013 года, настала очередь "Фотона". Внешне космические аппараты - братья-близнецы. Но по научным задачам различаются. "Фотон-М" под номером 4 предназначен для проведения на орбите экспериментов в сфере космических технологий по производству полупроводников в условиях микрогравитации, биотехнологий для получения новых знаний по физике невесомости. "Фотон" отправится на орбиту через неделю.

В повседневной жизни мы даже не задумываемся, что соль, сахар, металлы, драгоценные камни — все это кристаллы. Сегодня без них не обходится ни один электронный прибор.

"Первая космическая установка по выращиванию кристаллов. В 1976 году на станции "Салют-5" на ней выращивали алюмокалиевые кристаллы. Никаких особых условий для их выращивания не требовалось, ни специальных температур, ни давления, ученым необходимо было посмотреть, как влияет отсутствие гравитации на кристаллическую решетку. И, кажется, с тех времен здесь еще что-то осталось", — рассматривает содержимой космической установки по выращиванию кристаллов Ксения Зима.

Исследования по выращиванию кристаллов на орбите показали, лучше всего там растут белки.

" , одна из задач - получить кристалл очень чистый, получить однородный кристалл. Для белков подавление конвекции - это благоприятный фактор. В космосе подавляется движение жидкости, поэтому там они лучше растут", — поясняет заместитель директора Института кристаллографии РАН Алексей Волошин.

На Байконуре завершилась установка научного оборудования в космический аппарат "Фотон-М". Старт — в ближайшее время. На борту спутника — приборы для десятков экспериментов по кристаллографии, материаловедению, биологии, микробиологии. И это лишь часть направлений. Словом, "Фотон" - кластер научных идей.

"Уникальность в том, что предыдущие "Фотоны" у нас больше чем на 20 суток не летали. Этот полет планируется на 60 суток. Это первое. Второе, на этом космическом аппарате имеется двигательная установка, мы можем поднимать аппарат на более высокую орбиту. Мы будем летать на высоте 500 километров", — отметил начальник отдела ракетно-космического центра "ЦСКБ-Прогресс" Валерий Абрашкин.

Чем выше, тем лучше, утверждают ученые. 500 километров - ближний космос: уже не так сильно влияет атмосфера, очень слабая гравитация, а значит, и чистота экспериментов будет высокой.

"На этом космическом аппарате у нас летит 22 типа аппаратуры. На каждой аппаратуре — несколько экспериментов. То есть мы постарались скомпоновать космический аппарат таким образом, чтобы ученые различных направлений исследований могли поставить свои эксперименты и получить нужную научную информацию", — продолжил Валерий Абрашкин.

Внешне "Фотон" похож на научный биологический аппарат "Бион". Братья-близнецы. Круглая капсула, которая и наполняется научными приборами. При возвращении из космоса она не сгорает в атмосфере, все эксперименты возвращаются на Землю.

В отличие от "Фотона" на биоспутниках есть система жизнеобеспечения. Поддерживается определенная температура, давление, уровень кислорода, так как основные пассажиры "Биона" - живые организмы. "Фотоны" пассажиров не возят, на них ученые проводят технологические эксперименты.

"Полезная нагрузка — одно из устройств кристаллизации белков, которые полетят на "Фотоне". Устройство основано на принципе встречной диффузии жидкости", — говорит Алексей Волошин.

Именно на орбите удается получить более точные белковые структуры. Для фармацевтов это большая помощь в создании новых эффективных лекарств.

"Если это белок какой-то вредной бактерии, то подбирают вещество, которое должно подавить структуру этого белка. Если белок выполняет полезную функцию, подбирают вещество, которое должно усилить эту функцию", — рассказывает о сути экспериментов замдиректора Института кристаллографии РАН Алексей Волошин.

В другой лаборатории работают настоящие стоматологи. Пломбируют лунки базальтов, в которых находятся микроорганизмы. Пластины с микробами прикрепят на внешнюю сторону корабля "Фотон".

Бактериям предстоит выдержать космическую радиацию, а при возвращении - высокие температуры. Если не погибнут - у сторонников теории панспермии — что жизнь на Земле посеяли метеориты - появится веский аргумент.

"После посадки разогретый базальт вынимается и дальше смотрят — выжили ли микроорганизмы. Так проверяется теория панспермии", — рассказывает замдиректора Института медико-биологических проблем РАН Владимир Сычев.

Микробов подбирали особых, которые выдержат гигантские температуры в сотни градусов. Правда, у иностранных коллег подобный эксперимент не получился - бактерии погибли. Однако отрицательный результат только вдохновил наших микробиологов.

"Мы, вдохновленные опытом европейских коллег, решили расширить спектр микроорганизмов. Вместе с Институтом микробиологии РАМН создали коллекцию тех культур и ассоциаций, которые именно могли быть внесены на Землю в составе метеоритов", — рассказал заведующий лабораторией Института медико-биологических проблем РАН Вячеслав Ильин.

Впервые на этом "Фотоне" будет нарушено главное правило: животных не возить. На космическом аппарате в своей специально оборудованной каюте.

"Этот вид обитает на острове Маврикий, основные причины, по которым был выбран этот вид, небольшие размеры, а самая главная причина, что этот вид может обходиться без живого корма, что позволит им в течение 2 месяцев прекрасно существовать", — подчеркивает ведущий научный сотрудник Института медико-биологических проблем РАН Рустам Бердиев.

Главная особенность этих животных, которая и привлекла ученых, гекконы могут цепляться к любой поверхности. Поэтому в невесомости они не летают, а живут своей привычной жизнью и прекрасно себя чувствуют. Ну, если только во время старта их немного подбросит.

"Они фиксируются на поверхности, их много видов, у кого-то на лапках есть присоски специальные или маленькие крючочки, они прилипают к любой поверхности, для них поверхность важнее, чем гравитация. Они прилипают к поверхности стенок и не испытывают стресса флотации. А раз так, мы впервые в истории смогли избавиться от стресса", — подчеркнул заведующий лабораторией НИИ морфологии человека Сергей Соловьев.

Многочисленные эксперименты на гекконах подсказали ученым, как бороться с негативным влиянием невесомости на людей. От долгого пребывания на орбите у космонавтов вымывается кальций из организма. У гекконов такого не наблюдалось.

"Оказалось, что классическая модель - это деминерализация скелета, оказалось, гекконы, которые могут крепиться к поверхности. Это избавляет их кости от деминерализации. Гекконы показали путь, по которому надо развиваться дальше, чтобы снижать деминерализацию скелета космонавтов", — отмечает Сергей Соловьев.

Отправлять в космос аппараты только ради науки начали 40 лет назад. С тех пор были запущены десятки спутников. На орбите бывали обезьяны, мыши, рыбки. И каждый такой полет - еще один шаг к заветной мечте человечества — межпланетным перелетам.

Выращивание полупроводниковых кристаллов в космосе

Полупроводниковые кристаллы – это основа всей электроники, и, конечно, существует масса методов их получения в земных условиях. К сожалению, все они обладают общими недостатками: выращенные кристаллы часто оказываются неоднородными, слишком маленькими или испорченными посторонними примесями. Причин на то много, но среди них существует одна наиболее общего характера – сила притяжения. В земных условиях гравитация порождает явление термогравитационной конвекции, перемешивания жидкости под действием разности температур в поле тяготения. В условиях же космической невесомости роль этого фактора значительно спадает, и становится возможным получать полупроводниковые кристаллы более чистой структуры и совершенного состава.

Первые эксперименты по выращиванию материалов в космосе начались вскоре после полёта Гагарина, в 1961 году, и их результаты часто оказывались противоречивыми. Так, кристаллы Ge(Ca) и InSb(Te), полученные в американских экспериментах «Скайлэб», отличались высокой однородностью структуры, а кристаллы с борта «Аполлона-Союза», напротив, проигрывали своим земным аналогам. Причин для подобных неудач приводилось несколько: вибрации механизмов, остаточные микроускорения (ускорение свободного падения на борту космических аппаратов не равняется строго нулю вопреки распространяемым заблуждениям), некоторые конвекционные эффекты, незаметные при земном притяжении. Так учёным стало понятно, что космические условия намного сложнее, чем выглядят на первый взгляд, и многие эксперименты стали сопровождаться численными моделированиями. Они подтвердили: получать кристаллы совершенной структуры в космосе возможно, но чрезвычайно трудно.

Поэтому следующим этапом в изучении возможностей создания идеальных кристаллов стал метод физического моделирования. Полупроводниковые кристаллы часто получают методом направленной кристаллизации. Грубо говоря, тигель с нагретым расплавом нужного состава постепенно вносится в область с пониженной температурой, где и начинают расти кристаллы. Для ослабления земного явления термогравитации в подобных условиях учёные предложили перемещать не сам расплав, а создавать движущееся температурное поле с малыми радиальными температурными градиентами. Такой подход позволил моделировать космические условия роста кристаллов и заранее планировать эксперименты с экономией времени и материала. Используя этот подход были перекристаллиизованы полупроводниковые кристаллы GaSb(Te) в земных условиях и на борту АКА «Фотон-М3». В обоих случаях получились однородные кристаллы высокой чистоты, в которых наблюдались некоторые периодические зависимости физических свойств от структуры. При этом период зависимости для космических образцов составил 90 минут (что совпадает с периодом обращения спутника), а для наземных – 5–20 минут. Подробно результаты теоретических и экспериментальных работ, посвящённых выращиванию в космосе полупроводниковых кристаллов, описаны в обзорной статье российских физиков из ФТИ им. А. Ф. Иоффе РАН и НИЦ (Физика твёрдого тела, 2012, том 54, выпуск 7).

На днях на Международной космической станции начались опыты по выращиванию идеальных кристаллов в отсутствие гравитации. Особенность именно этой группы экспериментов в том, что выращиваемый объект будет поддерживаться «на весу» звуком, а значит, останется ультрачистым.

SpaceDRUMS (Space Dynamically Responding Ultrasonic Matrix System) — разработка канадской фирмы Guigné International. Компания была основана Жаком Ивом Гине (Jacques Yves Guigné) в 1989 году. Жак работает с NASA уже около 17 лет и давно проталкивал идёю создания «акустического левитирующего устройства».

Поначалу предполагалось, что SpaceDRUMS отправится к МКС в 2003 году. Но из-за гибели шаттла Columbia программу пришлось свернуть на несколько лет.

В результате первые модули SpaceDRUMS были отправлены и установлены на МКС только в ноябре-декабре 2008 года. Последние же недостающие части оборудования прибыли с шаттлом Discovery буквально на днях, и система была наконец-то собрана полностью. Теперь SpaceDRUMS готова к началу работы.

Отметим также, что с японским космическим грузовиком HTV (мы рассказывали о нём ), дебютный старт которого запланирован на 11 сентября этого года, на МКС прибудут дополнительные образцы для проведения экспериментов.

Додекаэдрическая камера SpaceDRUMS заполнена аргоном, внутри расположены несколько источников звуковых волн. Аргон – инертный газ, а потому он не взаимодействует с веществами внутри камеры, при этом являясь проводящей средой для звука.

Сама реакционная камера (справа внизу) гораздо меньше, чем контрольная аппаратура, которая управляет процессами внутри неё (фото NASA).

«Лучи звуковой энергии, как невидимые нежные пальцы, будут поддерживать плавающий образец в центре контейнера, чтобы он не касался стенок сосуда. В отсутствие гравитации и прикосновений к каким-либо манипуляторам или стенкам можно получить очень чистые структуры», — объясняет Гине.

Основная задача новой космической лаборатории – выращивание больших кристаллов веществ. Такие материалы наверняка будут востребованы на Земле, и уже сейчас ясно, что стоить полученные объекты будут сотни тысяч долларов (в зависимости от используемого вещества).

Пока планируется вырастить пористый образец стеклокерамики. Всё начнётся с гранул спрессованного серого порошка. После нагрева они станут керамическим материалом (что уже показано на Земле). Учёные надеются, что в условиях космоса молекулы вещества перестроятся таким образом, что образуются поры.

Специалист NASA Джули Робинсон (Julie Robinson) отмечает, что в SpaceDRUMS можно работать практически с любым веществом и выращивать объекты диаметром с мяч для бейсбола или гольфа. Между тем предыдущие образцы, полученные в условиях микрогравитации, не превышали в длину нескольких миллиметров. Гине считает, что в будущем наибольшим спросом будут пользоваться выращенные таким образом полупроводники.

Пока же аппаратура будет доступна для работы студентов-физиков, которые выполняют дипломные работы в университете Бата (

ВОЗМОЖНОСТИ КОСМОСА

Помните, в США проводили конкурс среди детей. Надо было придумать космический эксперимент. Один мальчик предложил посмотреть, каким образом в невесомости будет плести свою паутину паук?

Предложенный школьником опыт может быть отнесен к экспериментам в области космической технологии, поскольку преследуемая цель - исследовать технологию плетения паутины в космосе. Интуитивно молодой исследователь предполагал, что в невесомости земная технология будет уже непригодна. Первые нити на Земле паук образует спускаясь с чего-нибудь, например, с ветки. А как это сделать в пространстве, где нет верха и низа? Надо «придумывать» новую технологию. И очень интересно, как паук справится с этой задачей...

Подобными вопросами задавались ученые-технологи, ставившие технологические эксперименты в космосе. В отличие от паука, который в невесомости растерялся и стал плести «неорганизованную» паутину, специалисты по космической технологии имели первоначальные представления, сформулированные еще К. Э. Циолковским. Но, конечно, вопросов было немало. Как будут расти кристалы в космосе? Что получится, если смешать не смешивающиеся на Земле расплавы различных металлов?..

Другими словами, космическая технология как новая область человеческих знаний на первых порах изучала особенности протекания на борту космического аппарата производственных процессов, связанных с получением различных материалов.

В космосе многое не очень похоже на земные условия: иначе кипит вода, нет привычного бурления жидкости, а из носика чайника не вырывается струя пара. В космосе иначе горит свеча. На Земле нагретый пламенем воздух поднимается вверх, а ему на смену приходит свежий, богатый кислородом, необходимым для процесса горения. А в космосе, если искусственно не обеспечить приток свежего воздуха, свеча погаснет, израсходовав кислород вокруг фитиля.

В космосе при отсутствии силы тяжести начинают проявляться другие силы, например, молекулярные. Если жидкость смачивает стенки сосуда, то вылить ее оттуда в невесомости - проблема. И наоборот, если не смачивает - то она в сосуде как бы «парит», едва касаясь стенок, и при первой возможности стремится покинуть место своего заточения.

Примеры можно продолжить. Но то, о чем мы с вами говорили, относится все-таки к простым физическим явлениям. Их протекание в непривычных для нас условиях невесомости в какой-то мере логически предсказуемо. Другие же, более сложные процессы, например, рост кристаллов в невесомости, представить умозрительно в подробностях гораздо труднее. Здесь необходимы прямые эксперименты и накопление знаний.

На Земле невесомость можно создать лишь кратковременно. Многие из вас на мгновение испытывали ее: на автомобиле, когда дорога вдруг резко идет под уклон; на самолете, когда он попадает в «воздушную яму»... Космонавты в период тренировок обязательно летают на самолетах-лабораториях, где их приучают к невесомости в течение нескольких десятков секунд, пока самолет совершает специальный маневр - «горку», т. е. летит по баллистической кривой (близкой к параболе). В ходе этих полетов проводились и кратковременные технологические эксперименты. Они носили либо качественный, либо демонстрационный характер.

По-настоящему же исследовать процессы в невесомости можно только в космосе, на ракетах-зондах, спутниках, орбитальных станциях.

НУЖНА ЛИ КОСМИЧЕСКАЯ ТЕХНОЛОГИЯ?

Возникает естественный вопрос, для чего нужны технологические исследования в космосе? Для того, чтобы удовлетворить любопытство ученых. Но ведь провести эксперимент в космосе стоит очень дорого. Оправданы ли такие траты? Ответ однозначен - оправданы. Космоc (и только космос!) предоставляет нам уникальные физические условия, недостижимые на Земле. В этих условиях открывается возможность производить новые, еще невиданные по своим свойствам материалы, либо такие, производство которых на Земле чрезвычайно сложно и дорого. Конечно, речь идет не о тоннах и может быть даже не сотнях килограммов производимых материалов. По крайней мере в ближайшие десятилетия это вряд ли реально. Космическая техника еще не достигла такого уровня. Разговор может идти пока лишь об изготовлении уникальных образцов материалов, появление которых даст новый импульс развитию науки и техники, будет стимулировать технический прогресс. В этом случае будет оправдана высокая себестоимость такого материала.

Уже сейчас в условиях земной технологии некоторые «рекордные» образцы материалов, например, кристаллы полупроводников оцениваются по нескольку миллионов долларов за килограмм. За такую цену вполне реально окупить затраты, связанные с запуском космического объекта, его эксплуатацией в космосе и возвращением готовой продукции на Землю. Следовательно, можно реализовать рентабельное космическое производство. Но, безусловно, решение этой задачи - дело будущего. Пока для этого не созрели условия. Во-первых, требуется более высокий уровень развития ракетно-космической техники. Необходимо создать специализированные длительно летающие космические платформы, относительно дешевые и энергетически хорошо оснащенные. На них будут работать небольшие автоматические технологические комплексы для получения тех или иных материалов. Необходимо наладить регулярный грузопоток: туда - исходного сырья, обратно - готовой продукции. Во-вторых, необходимы знания, какие материалы целесообразно производить в космосе, по какой технологии? Для этого нужно выполнить предварительно обширный комплекс научно-исследовательских теоретических и экспериментальных работ.

НАЧАЛО СИСТЕМАТИЧЕСКИХ ЭКСПЕРИМЕНТОВ НА ОРБИТЕ

В 70-х годах такие работы были начаты в стране и за рубежом. В числе первых экспериментов были те, что выполнялись еще во время совместного космического полета «Союз» - «Аполлон» и продолжены на орбитальных станциях «Салют-4», «Салют-6» и «Салют-7». Эти эксперименты носили поисковый характер. Опробывались различные технологические процессы, эксперименты проводились с самыми различными материалами: сплавами металлов, композиционными материалами, полупроводниками, стеклами.

Но вот в апреле 1985 г. в Советском Союзе был запущен спутник «Космос-1645». После завершения 13-суточного полета спускаемый аппарат спутника доставил на Землю технологические установки и образцы материалов, полученные в космосе. Начиная с этого момента такие запуски стали ежегодными. С 1988 г. спутник получил название «Фотон». В апреле 1990 г. из космоса после 16-суточного полета вернулся очередной спутник «Фотон-6». На его борту, также как и на борту предыдущего «Фотона-5», в космос наряду с советской аппаратурой летала и аппаратура, созданная специалистами Франции. Расходы, и немалые, связанные с обеспечением запуска этой аппаратуры, оплачивались Французским национальным центром космических исследований (КНЕС).

ВАЖНЕЙШИЕ НАПРАВЛЕНИЯ КОСМИЧЕСКОЙ ТЕХНОЛОГИИ

Во-первых, выращивание высококачественных кристаллов полупроводников. Они требуются бурно развивающейся микроэлектронике, необходимы для создания уникальных лазеров, тепловизоров, чувствительных датчиков ядерных излучений и уникальных приборов для физических исследований. Как показали первые эксперименты, в невесомости полупроводниковые кристаллы выращиваются из расплава в более благоприятных условиях, чем на Земле. В расплаве отсутствует обязательная на Земле тепловая конвекция, из-за чего в растущем кристалле нет связанных с ней дефектов. Отсюда и иной характер взаимодействия растущего кристалла со стенкой тигля (осуществим свободный бестигельный рост кристалла).

Во-вторых, в космосе перспективна варка стекол. Современные технические стекла представляют собой многокомпонентные смеси. Отдельные компоненты существенно отличаются по удельной плотности. На Земле в расплаве эти компоненты стремятся расслоиться: более плотные опускаются ко дну тигля, менее плотные поднимаются наверх, приходится постоянно перемешивать расплав. Когда же стекломасса застывает, перемешивание невозможно, и в стекле образуются локальные сгустки более плотных компонентов (свили). Такое стекло уже дефектно. В невесомости нет расслоения компонентов расплава по удельной плотности.

В самостоятельное направление в последние годы выделилась космическая биотехнология (Земля и Вселенная, 1989, № 4). Первоначально основные работы здесь были сосредоточены на получении особочистых биопрепаратов. Один из методов очистки биопрепаратов - электрофорез. Но пока на первый план вышла идея использовать космос для выращивания совершенных кристаллов белковых веществ. Такие кристаллы остро необходимы для углубленного исследования белков методом рентгено-структурного анализа. На Земле кристаллы белков растут некачественными. Только космос здесь может решить проблему. Первые эксперименты это подтвердили. Недаром по коммерческим контрактам зарубежными специалистами на советских космических станциях выращивались кристаллы белков. Для их роста требуется довольно продолжительное время (не менее двух недель), а за рубежом пока нет для этого подходящих космических объектов.

Развитие космической технологии потребовало создание специальной бортовой технологической аппаратуры. Это разнообразные электропечи, кристаллизаторы, установки для электрофореза. Во всех таких сложных технических устройствах, в которых реализуются, например, процессы плавки и кристаллизации полупроводниковых материалов, аппаратура должна быть максимально легкой, компактной, надежной, безопасной, малоэнергоемкой, прочной. Нередко требования противоречат друг другу. Например, безопасность и высокая надежность требуют, как правило, увеличения массы, габаритов (за счет резервирования, увеличения запаса прочности и т. д.), а это, в свою очередь, приводит к увеличению энергопотребления.

ЧТО УЖЕ СДЕЛАНО?

На борту всех уже запущенных спутников «Фотон» размещалась установка «Зона-1» (последующая ее модификация - «Зона-4») - электропечь для выращивания полупроводниковых кристаллов методом зонной плавки. В исходном образце материала диаметром 10-20 мм проплавляется узкая (около 20 мм) зона, которая при медленном перемешивании образца относительно нагревателя также постепенно перемещается от одного конца образца к другому. Происходит процесс очистки и роста кристалла. При этом в невесомости зона расплава может удерживаться силами поверхностного натяжения и не проливаться, даже если образец не касается стенок тигля. Преимущество такой бестигельной зонной плавки состоит в том, что растущий кристалл не загрязняется примесями из стенок тигля и растет свободно без механического воздействия со стороны тигля.

Напомню, что в земных условиях бестигельная зонная плавка ряда полупроводниковых материалов (например, германия) неосуществима. На установке впервые в космических условиях в автоматическом режиме были получены методом бестигельной зонной плавки монокристаллы германия (чистого и легированного) и антимонида галлия - типичные представители наиболее интересных классов полупроводников.

Установка «Сплав-2» также автоматическая электропечь, созданная для спутника «Фотон», но реализующая методы кристаллизации из газовой фазы и объемного затвердевания. В «Сплаве-2» имеется магазин с двенадцатью металлическими капсулами, которые поочередно загружаются в печь. На конце каждой капсулы есть кодоноситель, содержащий зашифрованную программу эксперимента. Перед загрузкой в печь эта информация считается электронным устройством и передается в память управления. В установке «Сплав-2» проводились эксперименты с полупроводниками и стеклами. Особенно удачными были эксперименты по получению стекол с переменным показателем преломления.

Биотехнологические эксперименты на спутнике «Фотон» выполнялись в установке «Каштан», в которой производится разделение и очистка биологических веществ методами электрофореза в свободной среде жидкости, а также выращиваются кристаллы белков.

Основной узел установки - термостат, поддерживающий температуру +4 °С (наиболее благоприятную для биопрепаратов).

В зависимости от использования установки в термостате размещается электро-форетическая колонка, либо биокристаллизатор.

Качественные кристаллы белков необходимы современной биологии и медицине, но в земных условиях рост кристаллов из растворов белков в большинстве случаев крайне затруднен.

МОДУЛЬ «КРИСТАЛЛ»

Особое место эксперименты в космической технологии занимают в программе работ экипажей советской долговременной орбитальной станции «Мир». Пристыкованный к станции 10 июня 1990 г. модуль «Кристалл» (Земля и Вселенная, 1990, № 4, с. 52.), оснащенный целым рядом бортовых технологических установок, стал настоящей производственной лабораторией в космосе для проведения разнообразных экспериментов и получения материалов методами космической технологии. Среди технологических установок модуля «Кристалл» - две печи «Зона-2» и «Зона-3» более совершенные установки по сравнению с аналогичными на спутниках «Фотон». Они открывают новые возможности для проведения систематических исследований и экспериментов в интересах народного хозяйства страны.